PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular docking studies on the phytoconstituents as therapeutic leads against SARS-CoV-2

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Molekularne badania dokujące nad zastosowaniem fitoskładników w terapii przeciw SARS-CoV-2
Języki publikacji
EN
Abstrakty
EN
Because of the present pandemic researchers are seeking for phytocandidates that can inhibit or stop SARS-CoV-2. The main protease (Mpro) of SARS-CoV-2 and spike glycoprotein (S) are both suppressed by bioactive compounds found in plants that work by docking them together. The Mpro proteins 6LU7 (complex with an inhibitor N3) and 5C3N (space group C2221) were employed in docking research. PyRx and AutoDock Vina software were used as docking engine. 22 identified phytoconstituents were selected from IMPPAT, a manually curated database, on the basis of their antiviral effects. Docking studies showed that phytoconstituents β-amyrin (-8.4 kcal/mol), withaferin A (-8.3 kcal/mol), oleanolic acid (-7.8 kcal/mol), and patentiflorin A (-8.1 kcal/mol) had the best results against 5C3N Mpro protein whereas kuwanon L (-7.1 kcal/mol), β-amyrin (-6.9 kcal/mol), oleanolic acid (-6.8 kcal/mol), cucurbitacin D (-6.5 kcal/mol), and quercetin (-6.5 kcal/mol) against 6LU7 Mpro protein. All the compounds were examined for their ADMET characteristics using SwissDock. Present research reports that the phytoconstituents along with docking score will be helpful for future drug development against Covid-19.
PL
W związku z pandemią prowadzone są badania mające na celu znalezienie fitosubstancji, które mogą hamować lub zatrzymywać rozwój SARS-CoV-2. Działanie głównych białek proteazy (Mpro) SARS-CoV-2 i glikoproteiny kolca (S) jest osłabiane przez związki bioaktywne występujące w roślinach poprzez proces dokowania. Do badań dokujących użyto białka Mpro 6LU7 (kompleks z inhibitorem N3) i 5C3N (grupa przestrzenna C2221). Jako silnik dokujący zastosowano PyRx i AutoDock Vina. Zidentyfikowano 22 fitoskładniki wybrane z bazy danych IMPPAT, z uwzględnieniem ich działania przeciwwirusowego. Najbardziej skuteczne w przypadku białka Mpro 5C3N okazały się fitoskładniki β-amyryna (-8,4 kcal/mol), witaferyna A (-8,3 kcal/mol), kwas oleanolowy (-7,8 kcal/mol) i patentifloryna A (-8,1 kcal/mol), a w przypadku białka Mpro 6LU7 kuwanon L (-7,1 kcal/mol), β-amyryna (-6,9 kcal/mol), kwas oleanolowy (-6,8 kcal/mol), kukurbitacyna D (-6,5 kcal/mol) i kwercetyna (-6,5 kcal/mol). Wszystkie substancje zbadano pod kątem ich właściwości ADMET przy użyciu SwissDock. Wykazano, że fitoskładniki mogą być pomocne w pracach nad lekami przeciwko Covid-19.
Czasopismo
Rocznik
Strony
355---374
Opis fizyczny
Bibliogr. 56 poz., rys. tab. wykr.
Twórcy
  • Pharmacy Academy, IFTM University, Moradabad-244102, Uttar Pradesh, India
  • Pharmacy Academy, IFTM University, Moradabad-244102, Uttar Pradesh, India
  • Pharmacy Academy, IFTM University, Moradabad-244102, Uttar Pradesh, India
autor
  • Department of Pharmaceutical Sciences, Kumaun University, Bhimtal Campus, Nainital, Uttarakhand-263136 India
autor
  • MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana India
autor
  • MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana India
  • Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha-760010, India
  • Department of Pharmaceutical Sciences, M.D. University, Rohtak (124001), Haryana, India
  • Department of Pharmacy, G.D. Goenka University, Gurugram-122103, Haryana, India
  • Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia- 50603
Bibliografia
  • [1] Yan R., Zhang Y., Li Y. et al.: Science 2020, 367(6485), 1444. https//doi.org/10.1126/science.abb2762
  • [2] Chen Y., Liu Q., Guo D.: Journal of Medical Virology 2020, 92(4), 418. https://doi.org/10.1002/jmv.25681
  • [3] Su S., Wong G., Shi W. et al.: Trends in Microbiology 2016, 24(6), 490. https://doi.org/10.1016/j.tim.2016.03.003
  • [4] Raeiszadeh M., Adeli B.: ACS Photonics 2020, 7(11), 2941. https://doi.org/10.1021/acsphotonics.0c01245
  • [5] Chen L., Li Q., Zheng D. et al.: The New England Journal of Medicine 2020, 382(25), e100. https://doi.org/10.1056/NEJMc2009226
  • [6] Mousavizadeh L., Ghasemi S.: Journal of Microbiology, Immunology and Infection 2021, 54(2), 159. https://doi.org/10.1016/j.jmii.2020.03.022
  • [7] Muratov E.N., Amaro R., Andrade C.H. et al.: Chemical Society Reviews 2021, 50(16), 9121. https://doi.org/10.1039/D0CS01065K
  • [8] Gordon D.E., Jang G.M., Bouhaddou M. et al.: Nature 2020, 583(7816), 459. https://doi.org/10.1038/s41586-020-2286-9
  • [9] Sultana A., Tasnim S., Hossain M.M. et al.: F1000Res 2021, 10, 81. https://doi.org/10.12688/f1000research.50880.1
  • [10] Heller L., Mota C.R., Greco D.B.: Science of The Total Environment 2020, 729, 138919. https://doi.org/10.1016/j.scitotenv.2020.138919
  • [11] https://www.who.int/en/activities/tracking-SARS-CoV-2-variants (access date: 15.01.2022)
  • [12] Galindez G., Matschinske J., Rose T.D. et al.: Nature Computational Science 2021, 1, 33. https://doi.org/10.1038/s43588-020-00007-6
  • [13] Mohamed N.A., Solehan H.M., Mohd Rani M.D. et al.: PLoS ONE 2021, 16(8), e0256110. https://doi.org/10.1371/journal.pone.0256110
  • [14] Kwon D.: Nature 2020, 581, 130 https://doi.org/10.1039/D0CS01065K
  • [15] Wilkinson E., Giovanetti M., Tegally H. et al.: Science 2021, 374(6566), 423. https://doi.org/10.1126/science.abj4336
  • [16] Zaher N.H., Mostafa M.I., Altaher A.Y.: Acta Pharmaceutica 2020, 70(2), 145. https://doi.org/10.2478/acph-2020-0024
  • [17] Wang W., Xu Y., Gao R. et al.: JAMA 2020, 323(18), 1843. https://doi.org/10.1001/jama.2020.3786
  • [18] Meshnick S.R.: Med Trop (Mars) 1998, 58(3 Suppl), 13–7. PMID: 10212891
  • [19] Chowdhury S., Mukherjee T., Mukhopadhyay R. et al.: EMBO Molecular Medicine 2012, 4(10), 1126. https://doi.org/10.1002/emmm.201201316
  • [20] Jantan I., Haque M.A., Ilangkovan M., Arshad L.: Frontiers in Pharmacology 2019, 10, 878. https://doi.org/10.3389/fphar.2019.00878
  • [21] Okoye N.N., Ajaghaku D.L., Okeke H.N. et al.: Pharmaceutical Biology 2014, 52(11), 1478. https://doi.org/10.3109/13880209.2014.898078
  • [22] Riaz A., Rasul A., Hussain G. et al.: Advances in Pharmacological and Pharmaceutical Sciences 2018, ID: 9794625. https://doi.org/10.1155/2018/9794625
  • [23] Patel J.I., Deshpande S.S.: Anti-Inflammatory & Anti-Allergy Agents in Medical Chemistry 2011, 10(6), 442. https://doi.org/10.2174/1871523011109060442
  • [24] English B.J., Williams R.M.: The Journal of Organic Chemistry 2010, 75(22), 7869. https://doi.org/10.1021/jo101775n
  • [25] Qian S., Fan W., Qian P. et al.: Viruses 2015, 7(4), 1613. https://doi.org/10.3390/v7041613
  • [26] Mohan R., Hammers H., Bargagna-Mohan P. et al.: Angiogenesis 2004, 7, 115. https://doi.org/10.1007/s10456-004-1026-3
  • [27] Mohammadi N.S., Özgüneş H., Başaran N.: Turkish Journal of Pharmaceutical Sciences 2017, 14(2), 201. https://doi.org/10.4274/tjps.62207
  • [28] Gupta S.C., Patchva S., Aggarwal B.B.: The AAPS Journal 2013, 15(1), 195. https://doi.org/10.1208/s12248-012-9432-8
  • [29] Chepanova A.A., Mozhaitsev E.S., Munkuev A.A. et al.: Applied Sciences 2019, 9(13), 2767. https://doi.org/10.3390/app9132767
  • [30] Salehi B., Machin L., Monzote L. et al.: ACS Omega 2020, 5(20), 11849. https://doi.org/10.1021/acsomega.0c01818
  • [31] Alagawany M., Abd El-Hack M.E., Farag M.R. et al.: Animal Health Research Reviews 2017, 18(2), 167. https://doi.org/10.1017/S1466252317000081
  • [32] Baser K.H.C.: Current Pharmaceutical Design 2008, 14(29), 3106. https://doi.org/10.2174/138161208786404227
  • [33] Sharma C., Al Kaabi J.M., Nurulain S.M. et al.: Current Pharmaceutical Design 2016, 22(21), 3237. https://doi.org/10.2174/1381612822666160311115226
  • [34] Sen A.: World Journal of Clinical Cases 2020, 8(10), 1767. https://doi.org/10.12998/wjcc.v8.i10.1767
  • [35] Alghasham A.A.: International Journal of Health Sciences 2013, 7(1), 77. https://doi.org/10.12816/0006025
  • [36] Nahar L., Talukdar A.D., Nath D. et al.: Molecules 2020, 25(21), 4983. https://doi.org/10.3390/molecules25214983
  • [37] Aditya S., Gupta S.: Indian Dermatology Online Journal 2013, 4(3), 246. https://doi.org//10.4103/2229-5178.115538
  • [38] Lim S.H.. Choi C.-I.: Nutrients 2019, 11(2), 437. https://doi.org/10.3390/nu11020437
  • [39] Zhang H.-J., Rumschlag-Booms E., Guan Y.-F. et al.: Journal of Natural Products 2017, 80(6), 1798. https://doi.org/10.1021/acs.jnatprod.7b00004
  • [40] Grosdidier A., Zoete V., Michielin O.: Nucleic Acids Research 2011, 39, W270. https://doi.org/10.1093/nar/gkr366
  • [41] Mengist H.M., Fan X., Jin T.: Signal Transduction and Targeted Therapy 2020, 5(1), 67. https://doi.org/10.1038/s41392-020-0178-y
  • [42] Ferreira L.G., Dos Santos R.N., Oliva G., Andricopulo A.D.: Molecules 2015, 20(7), 13384. https://doi.org/10.3390/molecules200713384
  • [43] Rahman M.M., Saha T., Islam K.J. et al.: Journal of Biomolecular Structure and Dynamics 2021, 39(16), 6231. https://doi.org/10.1080/07391102.2020.1794974
  • [44] Jacobson M.P., Pincus D.L., Rapp C.S. et al.: Proteins 2004, 55(2), 351. https://doi.org/10.1002/prot.10613
  • [45] Jacobson M.P., Friesner R.A., Xiang Z., Honig B.: Journal of Molecular Biology 2002, 320(3), 597. https://doi.org/10.1016/S0022-2836(02)00470-9
  • [46] Morris G.M., Huey R., Lindstrom W. et al.: Journal of Computational Chemistry 2009, 30(16), 2785. https://doi.org/10.1002/jcc.21256
  • [47] Jorgensen W.L., Tirado-Rives J.: Proceedings of the National Academy of Sciences 2005, 102(19), 6665. https://doi.org/10.1073/pnas.0408037102
  • [48] Hall D.C. Jr., Ji H.-F.: Travel Medicine and Infectious Disease 2020, 35, 101646. https://doi.org/10.1016/j.tmaid.2020.101646
  • [49] Guex N., Peitsch M.C.: Electrophoresis 1997, 18(15), 2714. https://doi.org/10.1002/elps.1150181505
  • [50] Jin S.E., Ha H., Shin H.-K., Seo C.-S.: Molecules 2019, 24(2), 265. https://doi.org/10.3390/molecules24020265
  • [51] Martini R., Esposito F., Corona A. et al.: ChemBioChem 2017, 18(4), 374. https://doi.org/10.1002/cbic.201600592
  • [52] Vitor C.E., Figueiredo C.P., Hara D.B. et al.: British Journal of Pharmacology 2009, 157(6), 1034. https://doi.org/10.1111/j.1476-5381.2009.00271.x
  • [53] Sultana T., Okla M.K., Ahmed M. et al.: Molecules 2021, 26(24), 7696. https://doi.org/10.3390/molecules26247696
  • [54] Bugin K., Woodcock J.: Nature Reviews Drug Discovery, 2021, 20, 254. https://doi.org/10.1021/acs.jnatprod.7b00004
  • [55] Liu J.: Journal of Ethnopharmacology 1995, 49(2), 57. https://doi.org/10.1016/0378-8741(95)90032-2
  • [56] Wang N., Liang H., Zen K.: Frontiers in Immunology 2014, 5, ID: 614. https://doi.org/10.3389/fimmu.2014.00614
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c555912c-13be-4a5f-9455-43d9f2f02bd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.