Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examines the influence of SiO2 and Na2O mix proportions on the properties of alkali-activated slag (AAS) pastes. In order to solve the rapid setting problem associated with AAS, phosphoric or silicic acid is commonly added to the alkaline activator. The retarding effect of these additions suggests a close relationship between pH and setting time. In this study, AAS pastes with various SiO2 and Na2O dosages were analyzed. Regression analysis was carried out using pH value and setting time to identify the main parameters affecting the setting time. Results showed that the alkali modulus (i.e., the weight ratio of SiO2 over Na2O) is correlated with the pH value. Specifically, the initial and final setting times were significantly reduced under lower SiO2 and Na2O dosages. Therefore, a higher alkali modulus prolonged the setting time.
Wydawca
Czasopismo
Rocznik
Tom
Strony
570--579
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 325, Taiwan
autor
- Department of Civil Engineering, National Ilan University, Yilan 260, Taiwan
autor
- Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 202, Taiwan
autor
- Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 202, Taiwan
Bibliografia
- [1] Kamath M, Prashant S, Kumar M. Micro-characterisation of alkali activated paste with fly ash-GGBS-metakaolin binder system with ambient setting characteristics. Constr Build Mater. 2021;277:122323.
- [2] Zhang B, Zhu H, Cheng Y, Huseien GF, Shah KW. Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: a critical review. Constr Build Mater. 2022;318:125993.
- [3] Korniejenko K, Frączek E, Pytlak E, Adamski M. Mechanical properties of geopolymer composites reinforced with natural fibers. Procedia Eng. 2016;151:388–93.
- [4] Saha S, Rajasekaran C. Mechanical properties of recycled aggregate concrete produced with Portland pozzolana cement. Adv Concr Constr. 2016;4(1):27–35.
- [5] Solanki P, Dasha B. Mechanical properties of concrete containing recycled materials. Adv Concr Constr. 2016;4(3):207–20.
- [6] Korniejenko K, Łach M, Mikuła J. Mechanical properties of raffia fibres reinforced geopolymer composite. In: Fangueiro R., Rana S, editors. Advances in natural fibre composites. Cham: Springer; 2018. pp. 135–144.
- [7] Chen K, Lin WT, Liu W. Microstructures and mechanical properties of sodium-silicate-activated slag/co-fired fly ash cementless composites. J Clean Prod. 2020;277:124025.
- [8] Hafez H, Kassim D, Kurda R, Silva RV, Brito J. Assessing the sustainability potential of alkali-activated concrete from electric arc furnace slag using the ECO2 framework. Constr Build Mater. 2021;281:122559.
- [9] Roy DM. Alkali activated cements: opportunities and challenges. Cem Concr Res. 1999;29(2):249–54.
- [10] Amer I, Kohail M, El-Feky MS, Rashad A, Khalaf MA. A review on alkali-activated slag concrete. Ain Shams Eng J. 2021;12(2):1475–99.
- [11] Awoyera P, Adesina A. A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud Constr Mater. 2019;11:e00268.
- [12] Ho HL, Huang R, Hwang LC, Lin WT, Hsu HM. Waste-based pervious concrete for climate-resilient pavements. Materials. 2018;11:900.
- [13] Gong C, Yang N. Effect of phosphate on the hydration of alkaliactivated red mud-slag cementitious material. Cem Concr Res. 2000;30(7):1013–16.
- [14] Collins F, Sanjayan JG. Effect of pore size distribution on drying shrinkage properties of alkali-activated slag concrete. Cem Concr Res. 2000;30(9):1401–06.
- [15] Parveen P, Singhala D. Development of mix design method for geopolymer concrete. Adv Concrete Constr. 2017;5(4):377–90.
- [16] Jiang D, Li X, Lv Y, Li C, Jiang W, Liu Z, et al. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer. Cem Concr Res. 2021;149:106581.
- [17] Zhang B, Zhu H, Feng P, Zhang P. A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: effects of chemical additives. J Build Eng. 2022;49:104056.
- [18] Dener M, Karatas M, Mohabbi M. High temperature resistance of self compacting alkali activated slag/portland cement composite using lightweight aggregate. Constr Build Mater. 2021;290:123250.
- [19] Allahverdi A, Najafi Kani E, Esmaeilpoor S. Effects of silica modulus and alkali concentration on activation of blast-furnace slag. Iran J Mater Sci Eng. 2008;5(2):32–5.
- [20] Shi Z, Shi C, Wan S, Zhang Z. Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars. Cem Concr Res. 2018;111:104–15.
- [21] Dener M, Karatas M, Mohabbi M. Sulfate resistance of alkali-activated slag/Portland cement mortar produced with lightweight pumice aggregate. Constr Build Mater. 2021;304:124671.
- [22] Caijun S. Strength, pore structure and permeability of alkali activated slag mortars. Cem Concr Res. 1996;26(12):1789–99.
- [23] Pavel K, Oleg P, Hryhorii V, Serhii L. The development of alkali-activated cement mixtures for fast rehabilitation and strengthening of concrete structures. Procedia Eng. 2017;195:142–6.
- [24] Gao X, Yu QL, Brouwers HJH. Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites. Ceram Int. 2017;43(15):12408–19.
- [25] Gao X, Yu QL, Lazaro A, Brouwers HJH. Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: reaction kinetics, gel structure and carbon footprint. Cem Concr Res. 2017;100:129–139.
- [26] Fernandez-Jimenez A, Palomob JG, Puertas F. Alkali-activated slag mortars mechanical strength behaviour. Cem Concr Res. 1999;29(8):1313–21.
- [27] Brough AR, Holloway M, Sykes J, Atkinson A. Sodium silicate based alkali-activator slag mortars, part II. The retarding effect of additions of sodium chloride or malic acid. Cem Concr Res. 2000;30(9):1375–9.
- [28] Zhang J, Ma Y, Zheng J, Hu J, Fu J, Zhang Z, et al. Chloride diffusion in alkali-activated fly ash/slag concretes: role of slag content, water/binder ratio, alkali content and sand-aggregate ratio. Constr Build Mater. 2020;261:119940.
- [29] Chang JJ. A study on the setting characteristics of sodium silicate-activated slag pastes. Cem Concr Res. 2003;33(7):1005–11.
- [30] Tong S, Yuqi Z, Qiang W. Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems. Constr Build Mater. 2021;272:121647.
- [31] Choi S, Lee KM. Influence of Na2O content and Ms (SiO2/Na2O) of alkaline activator on workability and setting of alkali-activated slag paste. Materials. 2019;12(13):2072.
- [32] Collins F, Sanjayan JG. Microcracking and strength development of alkali activated slag concrete. Cem Concr Compos. 2001;23(4–5):345–52.
- [33] Yang LY, Jia ZJ, Zhang YM, Dai JG. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cem Concr Compos. 2015;57:1–7.
- [34] Opiso EM, Sato T, Otake T. Microstructural properties of hardened cement paste blended with coal fly ash, sugar mill lime sludge and rice hull ash. Adv Concr Constr. 2017;5(3):289–301.
- [35] Atiş CD, Bilim C, Çelik Ö, Karahan O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23(1):548–55.
- [36] Mastali M, Kinnunen P, Dalvand A, Firouz RM, Illikainen M. Drying shrinkage in alkali-activated binders – a critical review. Constr Build Mater. 2018;190:533–50.
- [37] Alharbi N, Varela B, Hailstone R. Alkali-activated slag characterization by scanning electron microscopy, X-ray microanalysis and nuclear magnetic resonance spectroscopy. Mater Charact. 2020;168:110504.
- [38] Paradiso P, Santos RL, Horta RB, Lopes JNC, Ferreira PJ, Colaço R. Formation of nanocrystalline tobermorite in calcium silicate binders with low C/S ratio. Acta Mater. 2018;152:7–15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c553d5f1-9bad-40ae-95eb-c43f603db2fb