PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of thermoplastic waste from production on the strength of cement mortars

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents study results on the effect of the addition of polymeric waste on selected mechanical properties (flexural and compressive strength) of cementitious composites with a special emphasis on cement mortars. This research focuses on cement mortars, commonly used in construction applications such as seaports and quays. Here, post-production waste from the production of automobile floor mats is ground to a fraction of 0–2 mm and used in the amounts of 5%, 7.5%, and 10% by weight of cement as an additive or substitute for sand. All the presented tests are conducted in accordance with PN-EN 197-1. The purpose of these tests is to determine the possibility of using thermoplastic waste as an aggregate substitute or additive in cement mortars. The conducted research confirmed the possibility of using the mentioned waste in cement mortar production technology in the amount of 5% as a substitute for sand.
Rocznik
Strony
42--48
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Faculty of Civil Engineering 3 Akademicka St., 42-201 Czestochowa, Poland
Bibliografia
  • 1. Albano, C., Camacho, N., Reyes, J., Feliu, J.L. & Herna ´ndez, M. (2005) Influence of scrap rubber to Portland I concrete composites: Destructive and non-destructive testing. Composite Structures 71 (3–4), pp. 439–446, doi: 10.1016/j. compstruct.2005.09.037.
  • 2. Bostanci, S.C., Limbachiya, M. & Kew, H. (2016) Portland-composite and composite cement concretes made with coarse recycled and recycled glass sand aggregates: engineering and durability properties. Construction and Building Materials 128, pp. 324–340, doi: 10.1016/j.conbuildmat. 2016.10.095.
  • 3. Chen, C.-Y. & Lee, M.-T. (2019) Application of crumb rubber in cement-matrix composite. Materials 12(4), 529, doi: 10.3390/ma12030529.
  • 4. Chou, L.-H., Yang, C.-K., Lee, M.-T. & Shu, C.-C. (2010) Effects of partial oxidation of crumb rubber on properties of rubberized mortar. Composites Part B: Engineering 41(8), pp. 613–616, doi: 10.1016/j.compositesb.2010.09.009
  • 5. Dębska, B., Krasoń, J. & Lichołai, L. (2020) The evaluation of the possible utilization of waste glass in sustainable mortars. Construction of Optimized Energy Potential (CoOEP) 9(2), pp. 7–15, doi: 10.17512/bozpe.2020.2.01.
  • 6. Deja, A., Ulewicz, R. & Kyrychenko, Y. (2021) Analysis and assessment of environmental threats in maritime transport. Transportation Research Procedia 55, pp. 1073–1080, doi: 10.1016/j.trpro.2021.07.078.
  • 7. Directive 2014/955/EU. Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council Text with EEA relevance. Official Journal of the European Union L370/44, Brussels.
  • 8. Gesoğlu, M. & Güneyisi, E. (2007) Strength development and chloride penetration in rubberized concretes with and without silica fume. Materials and Structures 40, pp. 953– 964, doi: 10.1617/s11527-007-9279-0.
  • 9. Gucma, M., Deja, A. & Szymonowicz, J. (2023) Environmental solutions for maritime ships: challenges and needs. Production Engineering Archives 29 (2), pp. 216–224, doi: 10.30657/pea.2023.29.25.
  • 10. Halicka, A., Ogrodnik, P. & Zegardlo, B. (2013) Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials 48, pp. 295–305, doi: 10.1016/j.conbuildmat.2013.06.063.
  • 11. Helbrych, P. (2022) Mechanical properties of concretes modified with steel fibers and polypropylene. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 71 (143), pp. 56– 63, doi: 10.17402/518.
  • 12. Jura, J. & Ulewicz, M. (2016) Use of the waste materials in cement mortars. Journal of Civil Engineering, Environment and Architecture 63 (4/16), pp. 247–254.
  • 13. Jura, J. & Ulewicz, M. (2021) Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials 14(21), 6708, doi: 10.3390/ma14216708.
  • 14. Kalak, T., Szypura, P., Cierpiszewski, R. & Ulewicz, M. (2023) Modification of concrete composition doped by sewage sludge fly ash and its effect on compressive strength. Materials 16(11), 4043, doi: 10.3390/ma16114043.
  • 15. Kołtuńczyk, E. & Nowicka, G. (2007) Effect of poly (sodium- 4-styrenesulphonate) additives on properties of cement suspensions. Proceedings of International Scientific Conference “Surfactants and Dispersed Systems in Theory and Practice”, Ed: K.A. Wilk, PALMA Press, Wrocław, pp. 533–536.
  • 16. Komornicki, R., Jeziórska, R., Abramowicz, A. & Wielgosz, Z. (2013) Recykling odpadów wykładzin samochodowych. Przetwórstwo Tworzyw 19, 3(153), pp. 208–212.
  • 17. Korentz, J. & Szmatuła, F. (2020) Effect of the addition of rubber dust SBR on the properties of cement mortars. Materiały Budowlane 580(12), pp. 12–15, doi: 10.15199/33.2020.12.02.
  • 18. Madandoust, R., Ranjbar, M.M. & Mousavi, S.Y. (2011) An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene, Construction and Building Materials 25(9), pp. 3721–3731, doi: 10.1016/j.conbuildmat.2011.04.018.
  • 19. Ołdakowska, E. (2012a) Possibility of using the concretes modified with the disintegrated rubber waste material in the agricultural building engineering. Aparatura Badawcza i Dydaktyczna 2, pp. 61–68.
  • 20. Ołdakowska, E. (2012b) Modified foundations of the access roads for the rural objects. Aparatura Badawcza i Dydaktyczna 4, pp. 51–56.
  • 21. Ołdakowska, E. (2015) Assessment of selected properties of normal concretes with the grinded rubber from worn out vehicle tyres. Inżynieria Ekologiczna, Ecological Engineering 43, 49–54, doi: 10.12912/23920629/58902.
  • 22. Petrella, A. & Notarnicola, M. (2021) Lightweight cement conglomerates based on end-of-life tire rubber: effect of the grain size, dosage and addition of perlite on the physical and mechanical properties. Materials 14(1), 225, doi: 10.3390/ma14010225.
  • 23. Pietrzak, A. (2018) Assessment of the impact of recycling from pet bottles in selected concrete properties. Construction of Optimized Energy Potential 7(1), pp. 51–56, doi: 10.17512/bozpe.2018.1.07.
  • 24. Pietrzak, A. (2022) The use of polymer recyclates in the technology of concrete composites production. Materials Research Proceedings 24, pp. 83–89, doi: 10.21741/ 9781644902059-13.
  • 25. Pietrzak, A. & Ulewicz, M. (2018) Effect of post-consumer automotive lining carpets waste on the strength parameters of cement mortars. Materiały Budowlane 554(10), pp. 85–86, doi: 10.15199/33.2018.10.26.
  • 26. PN-EN 197-1:2012 Cement – Część 1. Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku.
  • 27. Popławski, J. (2020) Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete. Construction of Optimized Energy Potential (CoOEP) 9(1), pp. 89–96, doi: 10.17512/bozpe.2020.1.11.
  • 28. Skowińska, A. & Foszcz, T. (2019) Study of rubber granules impact on selected mechanical properties of cement mortars. Structure and Environment 11(4), pp. 256–264, doi: 10.30540/sae-2019-019.
  • 29. Sofi, A. (2018) Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal 9(4), pp. 2691–2700, doi: 10.1016/j. asej.2017.08.007.
  • 30. Ulewicz, M. & Halbiniak, J. (2016) Application of waste from utilitarian ceramics for production of cement mortar and concrete. Physicochemical Problems of Mineral Processing 52(2), pp. 1002–1010, doi: 10.5277/ppmp160237.
  • 31. Ulewicz, M. & Pietrzak, A. (2021) Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats. Materials 14(4), 872. doi: 10.3390/ma14040872.
  • 32. Ulewicz, M. & Pietrzak, A. (2023) Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties. Materials 16(6), 2231, doi: 10.3390/ma16062231.
  • 33. Ulewicz, M. & Siwka, J. (2010) Procesy odzysku i recyklingu wybranych materiałów. Wydawnictwo Wydz. Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej.
  • 34. Walczak, P., Małolepszy, J., Reben, M. & Rzepa, K. (2015) Mechanical properties of concrete mortar based on mixture of CRT glass cullet and fluidized fly ash. Procedia Engineering 108, pp. 453–458, doi: 10.1016/j.proeng. 2015.06.170.
  • 35. Xu, Y., Jiang, L., Xu, J. & Li, Y. (2012) Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Construction and Building Materials 27(1), pp. 32–38, doi: 10.1016/j.conbuildmat.2011.08.030.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c55168d5-0cac-4261-aaa1-0353ae964ab9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.