Identyfikatory
Warianty tytułu
Poprawa i ocena niezawodności opartej na wektorowej metodzie trajektorii Dubinsa dla korekty trajektorii pojazdów autonomicznych
Języki publikacji
Abstrakty
Due to global purposes to ensure growth of a competitive and sustainable transport system, also to solve traffic safety and environmental problems, various engineering solutions are being sought out. It can be assumed that autonomous vehicles are the technology, which will ensure the positive change in the transport system. Even though many studies successfully advanced toward realisation of autonomous vehicles, a significant amount of technical and policy framework problems still has to be solved. This paper addresses the problem of predefined path feasibility and proposes an effective methodology for a path to follow re-planning. The proposed methodology is composed of three parts and is based on the Dubins path approach. In order to modify the vector based Dubins path approach and to ensure the path feasibility, the optimisation problem was solved. A cost function with different inequality constraints was formulated. The performance and reliability of the proposed methodology were analysed and evaluated by carrying out an experimental research while using the autonomous test vehicle.
Dla zapewnienia rozwoju konkurencyjnego i zrównoważonego systemu transportowego, oraz w celu rozwiązania problemów związanych z bezpieczeństwem ruchu i środowiskiem, poszukiwane są różne rozwiązania techniczne. Można założyć, że autonomiczne pojazdy są technologią, która zapewni pozytywną zmianę w systemie transportowym. Mimo że wiele badań z powodzeniem dotyczyło realizacji autonomicznych pojazdów, należy jeszcze rozwiązać wiele problemów technicznych i prawnych. W niniejszym dokumencie poruszono problem predefiniowanej wykonalności ścieżki i zaproponowano skuteczną metodologię dla ścieżki do śledzenia ponownego planowania. Proponowana metodologia składa się z trzech części i opiera się na metodzie Dubinsa. Aby zmodyfikować metodę trajektorii Dubinsa i zapewnić optymalną trajektorię, w publikacji rozwiązano zadanie optymalizacji. Sformułowana funkcja celu z różnymi nieliniowymi ograniczeniami. Skuteczność i niezawodność proponowanej metodologii została przeanalizowana i oceniona po przeprowadzeniu eksperymentalnych badań z wykorzystaniem autonomicznego pojazdu badawczego.
Czasopismo
Rocznik
Tom
Strony
549--557
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
- Department of Automobile Engineering Vilnius Gediminas Technical University J. Basanavičiaus 28, LT-03224 Vilnius, Lithuania
autor
- Department of Automobile Engineering Vilnius Gediminas Technical University J. Basanavičiaus 28, LT-03224 Vilnius, Lithuania
Bibliografia
- 1. Alcala E, Puig, V, Quevedo, J, Escobet, T, Comasolivas R. Autonomous Vehicle Control Using a Kinematic Lyapunov-Based Technique with LQR-LMI Tuning. Control Engineering Practice 2018; 73: 1–12, https://doi.org/10.1016/j.conengprac.2017.12.004
- 2. Alcala E, Sellart L, Puig V, Quevedo J, Saludes J, Vazquez D, Lopez, A. Comparison of Two Non-Linear Model-Based Control Strategies for Autonomous Vehicles. 24th Mediterranean Conference on Control and Automation 2016: 846–851, https://doi.org/10.1109/MED.2016.7535921
- 3. Arokiasami W A, Vadakkepat P, Tan K C, Srinivasan D. Vector Directed Path Generation and Tracking for Autonomous Unmanned Aerial /Ground Vehicles. IEEE Congress on Evolutionary Computation (CEC) 2016: 1375–1381, https://doi.org/10.1109/CEC.2016.7743949
- 4. Bascetta L, Cucci D A, Mattuecci M. Kinematic trajectory Tracking Controller for an All-Terrain Ackermann steering Vehicle. IFACPapersOnLine 2016; 49(15): 13–18, https://doi.org/10.1016/j.ifacol.2016.07.600
- 5. Bayar G, Bergerman M, Konukseven E I, Koku A B. Improving the Trajectory Tracking Performance of Autonomous Orchard Vehicles Using Wheel Slip Compensation. Biosystems Engineering 2016; 146: 149–164, https://doi.org/10.1016/j.biosystemseng.2015.12.019
- 6. Brombacher A. (Re)liability of Self-driving Cars. An Interesting Challenge!. Quality and Reliability Engineering International 2014; 30(5): 613–614, http://dx.doi.org/10.1002/qre.1707
- 7. Brown M, Funke J, Erlien S, Gerdes J C. Safe Driving Envelopes for Path Tracking in Autonomous Vehicles. Control Engineering Practice 2017; 61: 307–316, https://doi.org/10.1016/j.conengprac.2016.04.013
- 8. Bullough J D, Skinner N P. High visibility reflective sign sheeting materials: field and computational evaluations of visual performance. Transport 2018; 33(2): 344–352, http://dx.doi.org/10.3846/16484142.2016.1230889
- 9. Castillo O, Trujillo L, Melin P. Multiple Objective Genetic Algorithms for Path-planning Optimization in Autonomous Mobile Robots. Soft Computing 2007; 11(3): 269–279, https://doi.org/10.1007/s00500-006-0068-4
- 10. Coombes M, Eaton W, MacAree O, Chen W H. Development of a Generic Network Enabled Autonomous Vehicle System. UKACC International Conference on Control 2014: 621–627, https://doi.org/10.1109/CONTROL.2014.6915211
- 11. Davoodi M, Panahi F, Mohades A, Hashemi S N. Clear and Smooth Path Planning. Applied Soft Computing 2015; 32: 568–579, https://doi.org/10.1016/j.asoc.2015.04.017
- 12. Delingette H, Hebert M, Ikeuchi K. Trajectory Generation with Curvature Constraint Based on Energy Minimization. Proceedings of IEEE / RSJ International Workshop on Intelligent Robots and Systems 1991: 6 p., https://doi.org/10.1109/IROS.1991.174451
- 13. Fu Y, Li H, Kaye M. Design and Lyapunov Stability Analysis of a Fuzzy Logic Controller for Autonomous Road Following. Mathematical Problems in Engineering 2010: 20 p., https://doi.org/10.1155/2010/578406
- 14. Gottlieb Y, Manathara J G, Shima T. Multi-Target Motion Planning Amidst Obstacles for Autonomous Aerial and Ground Vehicles. Journal of Intelligent & Robotic Systems 2017: 1–22, https://doi.org/10.1007/s10846-017-0684-5
- 15. Gu T, Dolan J M. On-Road Motion Planning for Autonomous Vehicles. Intelligent Robotics and Applications 2012: 588–597, https://doi.org/10.1007/978-3-642-33503-7_57
- 16. Gupta N, Ordonez C, Collins E G. Dynamically Feasible, Energy Efficient Motion Planning for Skid-Steered Vehicles. Autonomous Robots 2017; 41(2): 453–471, https://doi.org/10.1007/s10514-016-9550-8
- 17. Han J, Seo Y. Mobile Robot Path Planning with Surrounding Point Set and Path Improvement. Applied Soft Computing 2017; 7: 35–47, https://doi.org/10.1016/j.asoc.2017.03.035
- 18. Kala R. On-Road Intelligent Vehicles. Motion Planning for Intelligent Transportation Systems. Kidlington: Elsevier, 2016.
- 19. Kikutis R, Stankūnas J, Rudinskas D, Masiulionis T. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor. Sensors 2017; 17(10): 23 p., https://doi.org/10.3390/s17102223
- 20. Krishan J, Rajeev U P, Jayabalan J, Sheela D S. Optimal Motion Planning Based On Path Length Minimisation, Robotics and Autonomous Systems 2017; 94: 245–263, https://doi.org/10.1016/j.robot.2017.04.014
- 21. LaValle S M. Planning Algorithms. Cambridge University Press: 2006.
- 22. Li X, Sun Z, Cao D, Liu D, He H. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mechanical Systems and Signal Processing 2017; 87: 118–137.
- 23. Liang T C, Liu J S. A Bounded-Curvature Shortest Path Generation Method for Cal-Like Mobile Robot Suing Cubic Spiral. Proceedings of 2004 IEEE / RSJ International Conference on Intelligent Robot and Systems 2004: 2819–2824, https://doi.org/10.1109/IROS.2004.1389836
- 24. Liang Y, Xu L. Global Path Planning for Mobile Robot Based Genetic Algorithm and Modified Simulated Annealing Algorithm. Proceedings of the FirstACM/SIGEVO Summit on Genetic and Evolutionary Computation 2009: 303–308, https://doi.org/10.1145/1543834.1543875
- 25. Macharet D G, Neto A A, Neto V F, Campos M F M. Nonholonomic Path Planning Optimization for Dubins’ Vehicles. IEEE International Conference on Robotics and Automation 2011: 4208–4213, https://doi.org/10.1109/ICRA.2011.5980239
- 26. Macharet D G, Neto A A, Neto V F, Campos M F M. Dynamic Region Visit Routing for Vehicles with Minimum Turning Radius. Journal of Heuristics 2017; 24(1): 83–109, https://doi.org/10.1007/s10732-017-9359-4
- 27. Medeiros A C, Urrutia S. Discrete Optimization Methods to Determine Trajectories for Dubins’ Vehicles. Electronic Notes in Discrete Mathematics 2010; 36: 17–24. https://doi.org/10.1016/j.endm.2010.05.003
- 28. Millo F, Cubito C, Rolando L, Pautasso E, Servetto E. Design and development of an hybrid light commercial vehicle. Energy 2017; 136: 90–99, http://dx.doi.org/10.1016/j.energy.2016.04.084
- 29. Młynarski S, Pilch R, Smolnik M, Szybka J. Methodology of network systems reliability assessment on the example of urban transport. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20(2): 278–283, http://dx.doi.org/10.17531/ein.2018.2.14.
- 30. Mousavi M, Pakniyat A, Wamg T, Boulet B. Seamless dual brake transmission for electric vehicles: design, control and experiment. Mechanism and Machine Theory 2015; 94: 96–118, https://doi.org/10.1016/j.mechmachtheory.2015.08.003
- 31. Pielecha I, Cieślik W, Szałek A. Operation of electric hybrid drive systems in varied driving conditions. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (1): 16–23, http://dx.doi.org/10.17531/ein.2018.1.3.
- 32. Pravilonis T, Sokolovskij E, Surblys V. The analysis of deformations of the frame in a basic minibus and a low floor minibus. Mechanics 2017; 23(3): 365–369, http://dx.doi.org/10.5755/j01.mech.23.3.14480
- 33. Receveur J B, Victor S, Melchior P. Multi-Criteria Trajectory Optimization for Autonomous Vehicle, IFAC Papers Online 2017; 50(1): 12520–12525. https://doi.org/10.1016/j.ifacol.2017.08.2063
- 34. Renzi C, Leali, F, Di Angelo L. A review on decision-making methods in engineering design for the automotive industry. Journal of Engineering Design 2017; 28(2): 118–143, http://doi.org/10.1080/09544828.2016.1274720
- 35. Reuter J. Mobile Robots Trajectories with Continuously Differentiable Curvature: An Optimal Control Approach. Proceedings of the IEEF / RSJ Intl. Conference on Intelligent Robots and Systems 1998: 38–43. https://doi.org/10.1109/IROS.1998.724593
- 36. Surblys V, Ślaski G, Pikosz H. The usage of a laser height sensors for estimating road unevenness profile. The archives of automotive engineering = Archiwum motoryzacji. Warszawa: Wydawnictwo Naukowe Przemysłowego Instytutu Motoryzacji 2018; 79(1): 95–106, http://dx.doi.org/10.14669/AM.VOL.79.ART7
- 37. Žuraulis, V.; Sokolovskij, E.; Matijošius, J. The opportunities for establishing the critical speed of the vehicle on research in its lateral dynamics. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2013; 15(4): 312–318.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c54f239c-2bdb-4d0a-b6cb-be8b0575e209