PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and verification of a shock absorber and its shim valve model based on the force method principles

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie i ocena amortyzatora i jego zaworu talerzowego oparte na zasadach metody sił
Języki publikacji
EN
Abstrakty
EN
In this paper, a mathematical model of a monotube shock absorber’s shim valve, which is developed by applying the force (flexibility) method, is described. This method expresses the relationship between displacements and the forces existing in the shock absorber structure. An application of the force method in the field of practical modification of vehicle shock absorbers enables to effectively analyse the influence of a wide range of parameters, including the number of shims in the valve, their disposition and the properties of the material on the level of the damping force. The damping of the shock absorber considerably impacts comfort and road holding characteristics of the vehicle. In addition, a whole model of a monotube shock absorber is designed in this paper. The validation and practical application of the mathematical model were evaluated by carrying out experimental measuring of the characteristics of the shock absorber using a special stand.
PL
W danej publikacji został opisany model matematyczny zaworu talerzowego jednorurowego amortyzatora, wyprowadzenia którego zastosowano metodę sił. Metoda ta wyraża związki pomiędzy przemieszczeniami i siłami działającymi na elementy amortyzatora. Stosowanie metody sił w praktycznej sferze modyfikacji amortyzatorów samochodowych pozwala efektywnie analizować wpływ różnych parametrów, w tym ilość, wzajemne położenie i właściwości materiałów talerzy zaworu, na generowaną amortyzatorem wielkość siły tłumienia. Tłumienie, które generuje amortyzator, wywiera znaczący wpływ na komfort jazdy samochodem oraz jego dynamikę. W publikacji również został stworzony kompletny model jednorurowego amortyzatora. Walidacja modelu matematycznego oraz możliwość zastosowania jego w praktyce zostały ocenione na podstawie eksperymentalnych pomiarów charakterystyk amortyzatorów na specjalnym stanowisku.
Rocznik
Strony
126--133
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Automobile Transport Vilnius Gediminas Technical University Basanavičiaus str., 28 LT-03224 Vilnius, Lithuania
autor
  • Department of Automobile Transport Vilnius Gediminas Technical University Basanavičiaus str., 28 LT-03224 Vilnius, Lithuania
autor
  • Department of Automobile Transport Vilnius Gediminas Technical University Basanavičiaus str., 28 LT-03224 Vilnius, Lithuania
autor
  • Department of Automobile Transport Vilnius Gediminas Technical University Basanavičiaus str., 28 LT-03224 Vilnius, Lithuania
Bibliografia
  • 1. Boggs C, Ahmadian M, Southward S. Efficient empirical modeling of a high-performance shock absorber for vehicle dynamics studies. Vehicle Systems Dynamics 2009, 48(4): 481-505, http://dx.doi.org/10.1080/00423110902906292.
  • 2. Burdzik R, Konieczny L, Piwnik J, Baranowski P. The influence of oil leak in modern vehicle shock absorber on its damping characteristics. Transport Problems 2009; 4(4): 99-106.
  • 3. Calvo J A, Diaz V, San Roman J l, Garcia-Pozuelo D. Influence of shock absorber wearing on vehicle brake performance. International Journal of Automotive Technology 2008, 9(4): 467-472, http://dx.doi.org/10.1007/s12239-008-0056-z.
  • 4. Calvo J A, Lopez-Boada B, San Roman J L, Gauchia A. Influence of a shock absorber model on vehicle dynamic simulation. Proc. of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering 2009, 223(2): 189-203, http://dx.doi.org/10.1243/09544070JAUTO990.
  • 5. Cui Y, Kurfess T R, Messmen M. Testing and Modeling of Nonlinear Properties of Shock Absorbers for Vehicle Dynamics Studies. Proc. of the World Congress on Engineering and Computer Science 2010, 2: 949-954.
  • 6. Czop P, Slawik D, Sliwa P, Wszolek G. Simplified and advanced models of a valve system used in shock absorbers. Journal of Achievements in Materials and Manufacturing Engineering 2009, 33(2): 173-180.
  • 7. Dixon J C. The Shock Absorber Handbook. Great Britain: Professional Engineering Publishing Ltd and John Wiley and Sons Ltd, 2007.
  • 8. Farjoud A, Ahmadian M, Craft M, Burke W. Nonlinear modeling and experimental characterization of hydraulic dampers: effects of shim stack and orifice parameters on damper performance. Nonlinear Dynamics 2011, 67(2): 1437-1456, http://dx.doi.org/10.1007/s11071-011-0079-2.
  • 9. Fernandes C, Noguchi E, Castro R, Almeida U. Influence of Shock Absorber Non-Linearities Over the Vehicle Dynamics Behaviour. SAE Technical Paper 2014-36-0018 2014: 10 pp, http://dx.doi.org/ 10.4271/2014-36-0018.
  • 10. Haj-Kacem R B, Ouerfelli N, Herraez J V, Guettari M, Hamda H, Dallel M. Contribution to modeling the viscosity Arrhenius-type equation for some solvents by statistical correlations analysis. Fluid Phase Equilibria 2014, 383: 11-20, http://dx.doi.org/ 10.1016/j.fluid.2014.09.023.
  • 11. Kim Y H, Bae W B, Lim D J, Suh Y S. A Study on the Development of Engineering Plastic Piston Used in the Shock Absorber. Metals and Materials 1998, 4(4): 852-858, http://dx.doi.org/10.1007/BF03026412.
  • 12. Koylu H, Cinar A. Dynamical investigation of effects of variable damper settings induced brake pressure oscillations on axle and wheel oscillations during ABS-braking based on experimental study. Meccanica 2013, 48(5): 1093-1115, http://dx.doi.org/10.1007%2Fs11012-012-9654-y.
  • 13. Koylu H, Cinar A. The influences of worn shock absorber on ABS braking performance on rough road. International Journal of Vehicle Design 2011, 57(1): 84-101, http://dx.doi.org/10.1504/IJVD.2011.043598.
  • 14. Lang H. Automotive dampers at high stroking frequency. Doctoral diss., University of Michigan, Ann Arbor, MI, 1977, 288 pp.
  • 15. Lee K. Numerical Modelling for the Hydraulic Performance Prediction of Automotive Monotube Dampers. Vehicle Systems Dynamics 1997, 28(1): 25-39, http://dx.doi.org/10.1080/00423119708969347.
  • 16. Lizarraga J, Sala J A, Biera J. Modelling of friction phenomena in sliding conditions in suspension shock absorber. Vehicle System Dynamics 2009, 46(1): 751-764, http://dx.doi.org/10.1080/00423119708969347.
  • 17. Ohlins Racing AB, Inside Ohlins T44 manual. Part 1. Theory and Design [online] [accesed 10 March 2016] Available from Internet: http://www.motorsportsspares.com/files/inside_the_tt44_theory_and_design.pdf.
  • 18. Ping Y. Experimental and mathematical evaluation of dynamic behaviour of an oil – air coupling shock absorber. Mechanical Systems and Signal Processing 2003, 17(8): 1367-1379, http://dx.doi.org/10.1006/mssp.2002.1528.
  • 19. Ping Y. Mechanical characteristics of oil-damping shock absorber for protection of electronic-packaging components. Tsinghua Science and Technology 2005, 10(2): 216-220, http://dx.doi.org/10.1016/S1007-0214(05)70057-2.
  • 20. Qian X, Qinghua L, Chao C. The influence of lateral shock absorber valve parameters on vehicle dynamic performance. Journal of Mechanical Science and Technology 2015, 29(5): 1907-1911. http://dx.doi.org/10.1007%2Fs12206-015-0412-7.
  • 21. Reybrouck K. A nonlinear parametric model of an automotive shock absorber. SAE Technical Paper 940869 1994: 10 pp, http://dx.doi.org/10.4271/940869.
  • 22. Rhoades K S. Development and experimental verification of a parametric model of an automotive damper. Master’s thesis, Texas A&M University, Canyon, TX, 2006, 126 pp.
  • 23. Shim ReStackor, Needle Geometry [online] [accesed 24 October 2015] Available from Internet:http://www.shimrestackor.com/Code/User_Manual/Sections/Input/Aux_Comp/Needle_Geom/needle-geom.htm.
  • 24. Simms A, Crolla D. The Influence of Damper Properties on Vehicle Dynamic Behaviour. SAE Technical Paper 2002-01-0319 2002: 14 pp, http://dx.doi.org/10.4271/2002-01-0319.
  • 25. Skačkauskas P, Žuraulis V. Research of characteristics of sports cars’ shock absorbers. Proc. 19th International Conference Transport Means 2015: 231-235.
  • 26. Talbott M S, Starkey J. An Experimentally Validated Physical Model of a High-Performance Mono-Tube Damper. SAE Technical Paper 2002-01-3337 2002: 20 pp, http://dx.doi.org/10.4271/2002-01-3337.
  • 27. Young W C, Budynas R G. Roark‘s Formulas for Stress and Strain. New York: McGraw-Hill, 2001.
  • 28. Yukimasa T, Motohashi H, Ohtaki M, Chikamori H. Comments on Oil Seals for Gas Pressurized Shock Absorbers of Automotive Suspensions. SAE Technical Paper 850333 1985: 12 pp, http://dx.doi.org/10.4271/850333.
  • 29. Žuraulis V, Levulytė L. The Influence of Comfort and Sport Driving Modes of Modern Vehicles on the Vibration of Sprung and Unsprung Masses. Proc. 18th International Conference Transport Means 2014: 15-19.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c54e2cf9-313b-434b-ad72-2a4d81d0eaab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.