THE ANTHROPOGENIC INUNDATED AREA "SZCZECIN" IN THE ZONE OF ACTIVE UNDERGROUND EXPLOITATION OF HARD COAL IN THE LUBLIN COAL BASIN

Małgorzata Ciosmak¹

¹ Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36 Str., 20-618 Lublin, Poland, e-mail: m.ciosmak@pollub.pl

Received: 2016.01.15 Accepted: 2016.03.04 Published: 2016.04.01

ABSTRACT

The investigated area lies in the geographical centre of Lublin Province. More specifically, it is located in the northern part of the Central Coal Region, between the Puchaczów-Urszulin route and the route leading through the village of Szczecin, which the investigated inundated area is named after, and between the town of Dratów and the "Bogdanka" Hard Coal Mine. The Lublin Upland, with the Lublin Coal Basin located in its centre, has one of the most valuable natural environments in Poland. There are many reserves, Poleski National Park and Natura 2000 area. The process of the intensive hard coal exploitation makes subsidence of surface as its result. The process of basin subsidence is irreversible. This paper deals with the problem of forming an anthropogenic water reservoir and its development in compliance with the policy of sustainable development and biodiversity maintenance in the face of heavy hard coal exploitation. It is suggested to use fluorides ground water to organize a health resort based on water reservoir and the described natural environment.

Keywords: environment, protected area, mining technology, inundated area.

INTRODUCTION

The term "anthropogenic" can have different meanings when used with reference to surface water, which is particularly important in the context of water in water reservoirs. Not all water reservoirs are flow reservoirs. In a non-flow reservoir, the concentration of dissolved or suspended components cannot be reduced (diluted) by flowing water, so water quality parameters in the reservoir cannot be improved. If anthropogenically polluted (after technological processing) water is allowed to enter a non-flow reservoir, then the reservoir can be described as anthropogenically polluted. If, however, wastewater is allowed to enter a flow reservoir, the water flowing into such a reservoir, the reservoir itself and the watercourse flowing out of the reservoir become anthropogenically polluted. In contrast, a totally different situation can be observed when a surface water reservoir is created as a result of anthropogenical activity, for retention purposes or intrinsically, due to human impact on nature. Located in the centre of the Lublin Province, the region of the Lublin Coal Basin is a lake district at the same time. The terrain is characterized by a shallow groundwater table. Since mining is done there using the stroke technology, terrain depressions begin to form post-mining voids a few years following mineral extraction. This leads to the formation of anthropogenic inundated areas which then become gradually inhabited by water organisms in a natural way, while their surroundings provide a habitat for flora and fauna. The results of observations of two water reservoirs in the investigated area: the older anthropogenic "Nadrybie Reservoir" and the new "Szczecin" reservoir, both created due to the action of the same phenomena, reveal analogous models of bottom and shoreline formation as well as fauna and flora occurrence in the water and the surrounding area. Given the proximity of the two water reservoirs, the stages

of their formation are identical. The changes are irreversible due to the permanence of terrain deformation caused by the mining technique which is applied there. In both cases, the subsidence basins are filled with both rainwater and water flowing from the adjacent areas. The available literature offers scientific publications that usually investigate the impact of diverse human activities on the already existing natural water reservoirs or retention reservoirs. Nonetheless, it is difficult to find publications about water reservoirs originated due to anthropogenic phenomena, particularly in the areas that have high environmental value and have undergone changes due to mining at the same time. This paper deals with the problem of forming an anthropogenic water reservoir and its development in compliance with the policy of sustainable development and biodiversity maintenance in the face of heavy hard coal exploitation.

DESCRIPTION OF THE AREA

Location

The investigated area lies in the geographical centre of the Lublin Province. More specifically, it is located in the northern part of the Central Coal Region, between the Puchaczów-Urszulin route and the route leading through the village of Szczecin, which the investigated inundated area is named after, and between the town of Dratów and the "Bogdanka" Hard Coal Mine. Due to the presence of dynamic terrain deformation, i.e. mining damage, there are no human settlements in the investigated area, except for an economic unit (a former state farm) in near vicinity. Nonetheless, the economic unit has no impact on the phenomena that occur there.

Land cover

The place where the terrain subsidence started due to the application of the conveyor technology formerly served as a place for grazing farm animals and growing hay for animals. It is covered with low meadow vegetation. Since the very beginning, the flood land becomes gradually inhabited by aquatic plants and coastal vegetation, such as bulrush, reed mace and reed. This vegetation occurs on the terrain that undergoes changes irrespective of human activity, therefore, it can be regarded as natural succession.

Overview of the geological structure, tectonics and morphogenesis of the investigated area

According to Dobrowolski, Harasimiuk and Brzezińska-Wójcik (2014), the topographic profile of the Lublin Upland can be attributed to early and middle Cenozoic phenomena as well as the structure of the Upper Cretaceous and Paleogene complex. This includes a series of Alpine and contemporary tectonic phenomena together with the Upper Cretaceous and Paleogene lithological diversity. The tectonics shaped the log structure and cleavage, while the lithological diversity – as the above authors claim – exerted impact on strength properties. Tectonic movements did not, however, stop, and today they can be both horizontal and vertical. In the investigated area, the vertical movements are estimated to be approx. 0.5 mm per year. This paper considers boreholes that illustrate the geologic profile of the investigated area and hence provide the basis for estimating the rate of subsidence and hydraulic connections between aquifers. Table 1 gives a comparison of these boreholes.

Table 1. Comparison of boreholes representative of the investigated area

Parameter	Bogdanka BP-4	Lublin 20	Lublin 15	Lublin 4	Lublin 19	Lublin 3	Lublin 5	Lublin 2
Depth [m]	755	1102	1012	1089	1122	1096	1015.5	1045
Bottom stratigraphy	Westphalian	Namurian C	Westphalian	Upper Carboniferous				
Year of drilling	1983	1972	1986	1972	1972	1972	1972	1975
Elevation above sea level [m]	170	169.82	169.3	170.98	172.39	172.26	172	175
Longitude [DDMMSS,SS]	225937.88	230028.95	225806.36	225906.04	225837.48	225955.53	225855.89	230246.22
Latitude [DDMMSS,SS]	512009.86	512021.62	511936.88	511953.23	512026.45	512051.63	511921.07	512041.86
Administrative commune	Puchaczów	Ludwin	Puchaczów	Puchaczów	Ludwin	Ludwin	Puchaczów	Puchaczów
GBDG number	3056733	3056790	3056829	3056827	3056752	3056788	3056828	3056787

The last item in each table with profile details is Westphalian. Found in Lublin Province, this coal-bearing formation is used for intensive hard coal mining.

Hydrologic and hydrogeologic conditions

The Łęczyńsko-Włodawskie Lake District and the grounds around the Hard Coal Mine "Bogdanka" have four main aquifers: Quaternary-Upper Cretaceous, Lower Cretaceous and Upper Jurassic as well as Carboniferous, consisting of numerous, often lenticular, aquifer complexes. Given the objective of the present analysis, the first and the second aquifers are of highest significance. The first aquifer is characterized by shallow aeration zone waters and can be found on the surface in a form of a vast number of water-filled terrain depressions. It also includes numerous lakes located in the north east of the investigated area. Owing to the meliorations done in the past, the area is crisscrossed with drainage channels that are still filled with water. It is worth noting that the Quaternary-Upper Cretaceous stratum lacks Tertiary deposits, as the Tertiary age was totally reduced by the following intensive erosion. As a result, the Quaternary deposits reside directly on the eroded Upper Cretaceous. The results of

Table 2. Profile of Bogdanka BP-4

Depth [m]	Lithology	Geologic period		
0.00 - 0.80	Sandy soil			
0.80 - 2.80	Sandy clay Fine-grained sand			
2.80 - 16.00				
16.00 - 32.00	Medium and coarse-grained sand Qu			
32.00 - 35.50	Clay			
35.50 - 41.70	Vari-grained sand with pebbles			
41.70 - 150.00	Marl			
150.00 - 250.00	Chalky limestone			
250.00 - 300.00	Marly limestone			
300.00 - 350.00	Limestone with marly insertions. flint nodules at sill			
350.00 - 450.00	Chalky limestone with single concretions and flat flints	Upper		
450.00 - 550.00	Chalky limestone with frequent concretions of flints	Cretaceous		
550.00 - 569.00	Chalky limestone			
569.00 - 576.00	Chalky limestone laminated by marly substance			
576.00 - 581.40	Sandy limestone. single concretions of phosphorites at sill			
581.40 - 582.00	Marly limestone with phosphorite concretions			
582.00 - 584.50	Glauconite sandstone with prosphorite concretions	Albian		
584.50 - 587.00	Organodetritic limestone			
587.00 - 589.30	Oolitic limestone			
589.30 - 590.40	Detritic limestone			
590.40 - 596.20	Pelitic limestone			
596.20 - 603.00	Oolitic limestone			
603.00 - 607.90	Pseudo oolitic limestone with marly limestone insertions			
607.90 - 612.80	Pelitic limestone lustrated			
612.80 - 618.00	Oolitic limestone			
618.00 - 626.50	Pelitic limestone lustrated	· .		
626.50 - 650.10	Pelitic limestone with marly limestone insertions. tectonically shattered 1 m in floor layer	Jurassic		
650.10 - 656.40	Detritic limestone with marly limestone insertions			
656.40 - 661.90	Organogenic limestone			
661.90 - 665.90	Cryptocrystalline limestone. cavernous in roof			
665.90 - 671.50	Reef limestone with much contents of clayey substance			
671.50 - 677.70	Organodetritic fine-crystalline limestone with numerous fauna. dolomite crumbs. single caverns	1		
677.70 - 678.90	Detritic limestone	1		
678.90 - 690.30	Brecciated limestone with flinty dolomite in floor	1		
690.30 - 700.30	Fine-crystalline limestone. with numerous flinty dolomite lens in roof	1		
	Crystalline limestone. sandy			
703.20 - 703.80	Crystalline cavernous limestone. with marly films in roof	Westphalian		

long-standing observations of the quality of the Jurassic water show that the Cretaceous deposits which have an average thickness of 250 m with

a vertical permeability coefficient amounting to 10⁻⁹m/s are practically impermeable. The layer arrangement is illustrated by means of over 500 m

Depth [m]	Lithology	Geologic period
0.00 - 0.30	Soil	
0.30 - 1.00	Fine-grained sand	Queterner
1.00 - 6.00	Clay	Quaternary
6.00 - 48.00	Vari-grained sand	
48.00 - 265.00	Marl with chalk-similar limestone	
265.00 - 425.00	Chalky limestone with marly and brittle limestone insertions	
425.00 - 545.50	Chalky limestone with marly and brittle limestone insertions. also flints insertions	Upper Cretaceous
545.50 - 567.80	Chalky limestone with brittle limestone insertions	
567.80 - 575.20	Sandy limestone with marl insertions	
575.20 - 577.40	Glauconitic limestone with phosphorite concretions	Albian
577.40 - 589.70	Limestone with numerous fauna and detritic limestones insertions	
589.70 - 608.40	Oolitic limestone with fauna	
608.40 - 658.00	Limestone with oolite andpelitic limestone concretions	
658.00 - 667.00	Zoogenic limenstone	Jurassic
667.00 - 695.00	Nodular limestone. with thin sandstone insertions in part of floor	JUIASSIC
695.00 - 696.80	Fine-grained sandstone with fauna]
696.80 - 698.20	Sandy limestone]
698.20 - 699.60	Vari-grained sandstone	
699.60 - 706.40	Claystone – sandy in roof	Westphalian

 Table 3. Profile of Lublin 20

Table 4. Profile of Lublin 15

Depth [m]	Lithology	Geologic period
0.00 - 0.30	Soil	
0.30 - 3.00	Dusty sand	
3.00 - 20.00	Fine-grained sand	Quaternary
20.00 - 30.00	Clay	
30.00 - 60.00	Fine-grained sand	
60.00 - 80.00	Marl	
80.00 - 310.00	Marly limestone	
310.00 - 372.00	Chalky limestone	
372.00 - 580.00	Brittle limestone with flints concretions	
580.00 - 584.20	Chalky limestone with marl insertions	Upper Cretaceous
584.20 - 594.60	Chalky limestone with marly limestone and marl insertions	
594.60 - 600.00	Sandy limestone – fromthe deep 598.90m single phosphorite concretions	
600.00 - 600.25	Marl	
600.25 - 603.40	Glauconitic sandstone with phosphorite concretions	Albian
603.40 - 605.50	Oolitic limestone	
605.50 - 611.40	Pelitic limestone with oolitic limestone insertions	
611.40 – 617.50	Oolitic limestone	
617.50 – 681.90	Pelitic oolitic limestone – passing to detritic limestone in floor	
681.90 - 687.90	Finecrystalline limestone. marl insertions	
687.90 - 697.40	Reef limestone with lignite crumbs	Jurassic
697.40 - 709.40	Brecciated cavernous limestone	
709.40 – 711.80	Crystalline limestone	
711.80 – 719.20	Detritic sandy limestone with dolomite insertions	
719.20 – 723.60	Detritic limestone	
723.60 – 723.70	Sandstone	
723.70 – 725.80	Siltstone	Westphalian

deep boreholes that are representative of the area. These boreholes include: Bogdanka BP-4, Lublin 20, Lublin 15, Lublin 4, Lublin 19, Lublin 3, Lublin 5 (according to the Central Geological Database – Tables 2 to 8). Their locations are given in Figure 1.

The phenomenon of water descent to lower levels was not observed. In a situation like this, every natural or anthropogenic depression becomes filled up with water. The degree of height difference, together with the inflow of both rainwater and groundwater are the only factors that lead to permanent or temporary filling of the entire depression. Given the exposure of such reservoirs to seasonal changes, the variations in water quality parameters must be seasonal, too. The quality of surface water in the Lublin Coal Basin region is also significantly affected by increased tourism and recreation in the neighbouring Łęczyńsko-Włodawskie Lake District, as well as by farming activities such as growing crops and farming animals. The impact of farming with its periodic activity is particularly visible in the vicinity of the anthropogenic Nadrybie and Szczecin reservoirs.

Table	5.	Profile	of L	ublin 4	
-------	----	---------	------	---------	--

Depth [m]	Lithology	Geologic period
0.00 - 0.30	Soil	
0.30 - 2.50	Fine-grained sand	
2.50 - 25.00	Vari-grained sand	Quaternary
25.00 - 50.00	Clay with quartz boulders ϕ 5mm	
50.00 - 70.00	Vari-grained sand with boulders ϕ 5mm	
70.00 - 360.00	Chalky limestone with marl insertions and marly limestones	
360.00 - 450.00	Chalky limestone with brittle limestone insertions	
450.00 - 540.00	Chalky limestone with brittle limestone and flints insertions	
540.00 - 570.00	Chalky limestone with greed-like and marly limestone insertions	Upper Cretaceous
570.00 - 576.80	Chalky limestone with marly limestone insertions	
576.80 - 581.60	Chalky limestone with marl insertions	
581.60 - 589.30	Limestone with marl. sandy in floor	
589.30 - 590.00	Fine-grained glauconitic sandstone. phosphorite concretions in floor	Albian
590.00 - 640.00	Limestone. sandy in roof	
640.00 - 670.00	Pelitic limestone with brittle limestones insertions	
670.00 - 700.00	Limestone with brittle limestones insertions	Jurassic
700.00 - 709.90	Sandy limestone with lumpy limestone . numerous fauna. cherts in roof	
709.90 - 714.00	Fine-grained limy sandstone]
714.00 – 716.10	Fine-grained micaceous sandstone with claystone insertions	Westphalian

Table 6. Profile of Lublin 19

Depth [m]	Lithology	Geologic period
0.00 - 0.30	Soil	
0.30 - 2.00	Clay	
2.00 - 62.00	Vari-grained sand	Quaternary
62.00 - 77.00	Sandy gravel with crumbs of marl	
77.00 - 276.00	Marl with creed-like limestone and writing chalk insertions	
276.00 - 367.00	Chalky limestone with brittle limestone and marl insertions	
367.00 - 562.00	Chalky limestone with flint insertions	
562.00 - 581.40	Chalky limestone with marl insertions	Upper Cretaceous
581.40 - 587.10	Sandy limestone	
587.10 - 589.50	Fine-grained glauconitic sandstone with phosphorite insertions	Albian
589.50 - 690.00	Organodetritic limestone	Jurassic
690.00 - 708.90	Pelitic sandy limestone with numerous fauna. nodules places	JULASSIC
708.90 – 711.10	Sandy claystone	Westphalian

Depth [m]	Lithology	Geologic period
0.00 - 0.30	Soil	
0.30 - 2.00	Vari-grained sand	Quaternary
2.00 - 52.00	Fine-grained sand	
52.00 - 72.00	Sandy marl	
72.00 – 282.00	Marl with writing chalk layers and creed-like limestone insertions	
282.00 - 453.50	Creed-like limestone with brittle limestone and marl insertions	
453.50 - 546.80	Creed-like limestone with flint insertions	Upper Cretaceous
546.80 - 567.80	Sandy limestone with marl insertions	
567.80 - 579.70	Creed-like limestone withmarl insertions	
579.70 - 586.40	Sandy limestone	
586.40 - 586.80	Glauconiticsandstone with phosphorite in floor	Albian
586.80 - 680.00	Nodular pelitic limestone	
680.00 - 682.60	Pelitic limestone with numerous fauna	lurancia
582.60 - 695.80	Nodular limestone with numerous fauna	Jurassic
695.80 - 708.10	Sandy limestone with pelitis limestone insertions	
708.10 - 724.90	Sandy claystone	Westphalian

Table 7. Profile of Lublin 3

Table 8. Profile of Lublin 5

Depth [m]	Lithology	Geologic period
0.00 - 0.30	Soil	
0.30 – 2.00	Clay	Quaternary
2.00 - 66.00	Vari-grained sand	
66.00 – 71.00	Marly clay	
71.00 – 190.00	Marl	
190.00 – 240.00	Creed-writing	
240.00 – 510.00	Limestone with Creed-writing and marly limestone insertions	Upper Cretaceous
510.00 – 580.00	Limestone with flint insertions	
580.00 - 614.00	Chalky limestone	
614.00 - 620.50	Sandy limestone	
620.50 - 621.50	Sandstone with phosphorite concretions	Albian
621.50 - 705.00	Limestone with pelitic limestone insertions	
705.00 – 718.70	Sandy limestone with numerous fauna	Jurassic
718.70 – 741.60	Nodular limestone with numerous fauna	
741.60 - 751.00	Claystone	Westphalian

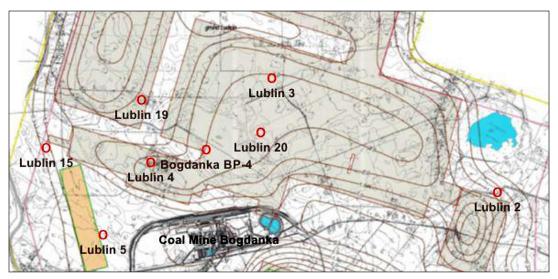


Figure 1. Location of representative boreholes

Description of the climate in the investigated area

The climate in the Lublin Coal Basin region has features of continental climate. Summers and winters are of a similar length (an average summer is 105 days long while an average winter is 110 days long), short spring and autumn. Compared to other regions of Poland, this region has the most sunny days per year. This leads to heavy evaporation. The rainfall is usually irregular and it is the heaviest in summer, being approximately 40% of the total annual rainfall. The mean annual air temperature is 7.3°C. The highest temperature, +36.2°C, was recorded in July 1959, while the lowest, -34.2, was recorded in January 1987. The Marine polar air predominantly comes from the West and West-North.

NATURAL ENVIRONMENT PRIOR TO MINING

The Lublin Upland, with the Lublin Coal Basin located in its centre, has one of the most valuable natural environments in Poland. Natural objects possessing particular significance for cognitive, scientific and recreational reasons have been granted legal protection as the Poleski National Park, landscape parks, sanctuaries, Natura 2000 sites, ecological corridors and natural monuments. Some of them were established along with the onset of hard coal exploitation in Bogdanka. Some of these sites are located only a few kilometers away from the mining zones. The stroke technology consists in leaving the empty space after mineral extraction unfilled. A natural consequence of this is that a depression starts to form above the post-mining void. Prior to the onset of mining, the investigated area was a flatland with low-density housing. Unsuitable for housing construction due to a high level of groundwater (even up to one meter below the surface), the area was used for making hay and for grazing farm animals. Given the lack of strong industrial anthropopressure, the flora and fauna of the area was hardly changed. Being a part of the Łęczyńsko-Włodawskie Lake District, this area quickly became popular with tourists. It was also used as a site for environmental research and observations, the results of which later served as the basis of documents for granting legal protection to this unique and valuable area.

DEVELOPMENT OF BASIN SUBSIDENCE

Intensive hard coal mining in three mines (Bogdanka, Nadrybie, Stefanów) located in the investigated area marked by the borders of the Lublin Coal Basin leads to terrain subsidence over the voids left after mineral extraction. The process is not rapid owing to vast spaces and the slow rate of subsidence of platform-arranged geologic layers. The results of the observations of water quality parameters in the first and subsequent aquifers reveal that the subsidence process is plastic; there are no cracks or faults. If they occurred, they would enable hydraulic connec-

Photo 1. Inundated area in the village of Szczecin (photo by M. Ciosmak)

tion between aquifers. The hydraulic connection would be easy to notice due to changes in water quality parameters. This, however, has not been observed. The results of geodetic measurement and visual observation clearly indicate subsidence. This gradual process is confirmed by the presence of inundated areas which occur in spring months when the snow melts or after heavy rainfalls. Gradually deprived of water via evaporation, the inundated areas become more and more extensive, and they do not have a clearly marked shoreline. The subsidence will continue as long as there are voids in mining activity zones. It is predicted that the process will continue for several years until the shoreline becomes stabilized. At its deepest part, the inundated area is currently 2-3 m deep under free water surface. However, the depth is not ultimate, as the process of subsidence can still be observed.

At present, there are two inundated areas in the vicinity of the Puchaczów V mining zone. The biggest one is the investigated anthropogenic water reservoir "Szczecin." Named after the nearby village, this reservoir has an area of ca. 90ha. Another water reservoir called "Nadrybie Reservoir" has an area of 30ha and is located in the vicinity of the coal mine in Nadrybie.

Since basin subsidence is classified as mining damage, it is therefore regulated under relevant legal measures concerning land reclamation and development in order to prevent environmental changes caused by intensive underground hard coal mining. For this reason, it was decided that the shoreline of the "Szczecin" reservoir would

Table 9. Profile of Lublin 2 (Nadrybie Skrzyżowanie)

be suitably shaped. According to Sawicki and Łyszczarz (2009), this indundated area is to be developed for recreational and retention purposes. The formation of the "Szczecin" reservoir cannot, however, be left to natural processes only, despite the predictions saying that the subsidence will proceed steadily in terms of time and geometry. Both the monitoring of this water reservoir and the observations of the older "Nadrybie Reservoir" included in the Natura 2000 network of sites demonstrate that the process must be controlled. Given the platform arrangement of layers that are parallel to one another and to terrain surface, it is therefore justified to create a subsidence model for every overlying layer. This can be done in an analogous way to the case of the "Nadrybie Reservoir," where the shoreline gradually becomes stabilized and the geologic profile (Table 9).

ENVIRONMENTAL CHANGES

The results of the observations reveal that the water-filled "Szczecin" reservoir begins to undergo changes that are similar to those characterizing the inundated area in the village of Nadrybie. Currently, the water is shallow and undergoing intensive euthrofication. It can be observed that the water table increases, thus flooding the surrounding grounds. In effect, the existing meadow plants get flooded and cease to grow. In places where the rate of subsidence is slower, we can observe the occurrence of coastline vegetation such

Depth [m]	Lithology	Geologic period
0.00 – 1.50	Fine-grained sand	
1.50 - 5.00	Clay	Queterner
5.00 - 20.00	Vari-grained sand	Quaternary
20.00 - 50.00	Fine-grained sand	
50.00 - 80.00	Marl	
80.00 - 500.00	Limestone with marly limestone insertions	
500.00 - 545.00	Sandy pelitic limestone	Upper Cretaceous
545.00- 562.00	Chalky limestone	
562.00 - 567.90	Limestone with fauna	
567.90 - 569.20	Sandstone	Albian
569.20 - 574.00	Limestone with oolitic limestone insertions	
574.00 - 667.00	Limestone	
667.00 - 683.40	Limestone with organodetritic limestone and flint insertions	Jurassic
683.40 - 685.30	Sandy limestone with sandstone insertions	
685.30 - 689.00	Fine-graines sandstone, 1,0m limestone in the middle part of layer	
689.00 – 700.70	Claystone 0,05m carbonaceous in floor	Upper Carboniferous, Westphalian

Photo 2. "Nadrybie Reservoir" which makes part of the Natura 2000 network (photo by M.Ciosmak)

Figure 2. Areas of the predicted subsidence due to large-scale exploitation of hard coal

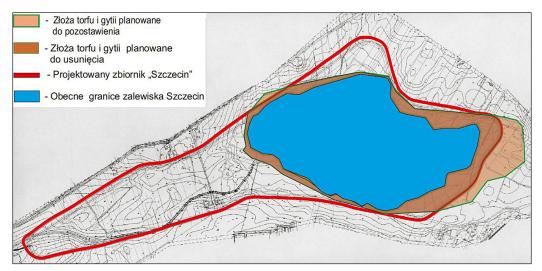


Figure 3. Location and designed shoreline shape of the "Szczecin" reservoir

as reed, bulrush, and reed mace, as well as aquatic plants. The shores of thereby enlarged Lake District area slowly become inhabited by waterfowl for nesting. Residing some 100 meters away from the current unstabilized shoreline, the local population restocks this area of water for fishing purposes. Due to intensive evaporation, the enlarging water reservoir creates a characteristic microclimate, which is particularly perceptible during periods of high air temperatures. The changes will also affect the landscape, as the formation of the water reservoir will add to its picturesqueness. Considering the changes that can occur after the ultimate formation of the "Szczecin" reservoir, it should be stressed that the lithological aspects, particularly the high layer thickness (amounting to several hundred meters) of carbonate formations, give basis for claiming that the mean vertical permeability coefficient of these formations and slow plastic subsidence above voids will not create hydraulic connection between the surface and the strata located below.

PREDICTED DEVELOPMENT OF THE "SZCZECIN" RESERVOIR

According to the technical design, the anthropogenic water reservoir "Szczecin" will have a target surface area of 200ha and will be included in the Wieprz-Krzna Channel hydrologic system. Given the basin's recreational function (fishing), the design inlcudes technical solutions for shoreline determination and water table stabilization (Figure 3). An interesting aspect of the design is the predicted use of mining wastes such as gangue for island formation and retrenchment. In the Lublin Coal Basin, 30% of gangue is processed into building elements. The island will provide a safe place for birds to hatch eggs. It is highly probable that the newly created "lake" will play a similar role to that of the "Nadrybie" reservoir, which is included in the Natura 2000 network as a nature conservation site.

MODEL OF DEVELOPMENT OF THE "SZCZECIN" RESERVOIR AND ITS SURROUNDINGS

The formation of water-filled subsidence is an irreversible process caused by the applied mining technology. Therefore, it is necessary to develop this water reservoir once its bottom and shoreline become stabilized or to modify it by erecting a hydrotechnical construction. Figure 4 shows a schematic model of procedure implemented after the first symptoms of terrain subsidence above post-mining voids.

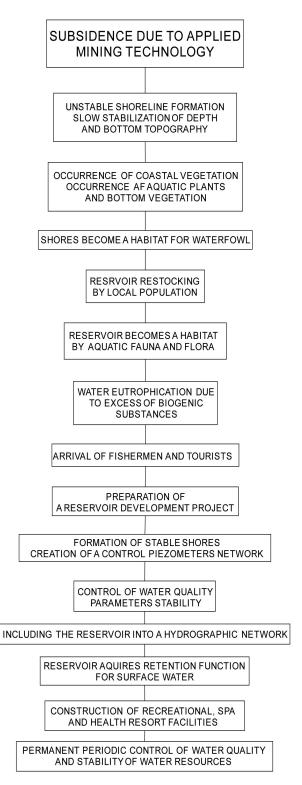


Figure 4. Schematic model of development of the anthropogenic water reservoir "Szczecin" (by Author)

CONCLUSIONS

The anthropogenic water reservoir "Szczecin" is the second important inundated area in the vicinity of the Hard Coal Mine "Bogdanka". It is created by the environment as a result of the applied stroke technology for coal mining, which consists in leaving voids after mineral extraction unfilled. The depressions which occur several years following extraction from the exploited Carboniferous strata are quickly filled with surface and rainwater. Despite intensive water evaporation in summer months, the loss of water in the reservoir is less and less noticeable, due to a gradual enlargement of the reservoir's capacity. The redressing of mining damage means reducing its effect on the environment. The process of basin subsidence is irreversible, thus the development of the water reservoir should be made in the least burdensome way; if possible, the newly created "lake" should be used for tourist and recreational purposes. The Lublin Coal Basin and the anthropogenic water reservoir "Szczecin" are located in a region that abounds in nature conservation sites, including the Poleski National Park, landscape parks, ecological corridors, nature reserves and natural monuments, as well as Natura 2000 sites. Hence, it is justified that the water reservoir and its surrounding area be developed and adapted to recreational purposes. Water from the Jurassic deposits contains a stable concentration of fluorine ions of even up to 10 mg/l, which is considered therapeutic.

REFERENCES

- Dobrowolski R, Harasimiuk M., Brzezińska-Wójcik T. 2014. Structural Controlof the Reliefin the Lublin Upland and Roztocze Region. Przegląd Geologiczny, 62(1), 51–62.
- 2. Documents from Archive of Coal Mine "Bogdanka".
- Sawicki B., Łyszczarz L. 2009. Zagospodarowanie turystyczne i rekeracyjne jako szansa rozwoju dla terenów zdegradowanych obszaru górniczego kopalni węgla w Bogdance. Inżynieria Ekologiczna--Ecological Engineering, 2, 121–130.
- 4. Fan G., Zhang D. 2015. Mechanisms of aquifer protection in underground coal mining. Mine Water Environment 34-95-104, Springer.
- Kazimierski B., Gidziński T. 2011. Conception of reorganization of national observation-research groundwater monitoring network. Biuletyn Państwowego Instytutu Geologicznego, No. 445, 255–266.
- Machowski R. 2010. Przemiany geosystemów zbiorników wodnych powstałych w nieckach osiadania na Wyzynie Katowickiej. Wydawnictwo Uniwersytetu Śląskiego, Katowice.
- Michalczyk Z., Zarębski K. 1995. Ground Water Interchange in the South-Western Part of the Łęczna-Włodawa Lake Region in "Bogdanka" Colliery .Kraków-Krynica. Współczesne problemy hydrogeologii, T. VII, 119–126.
- Molenda T. 2015. Changes in the morphometry of fishing breeding ponds under the influence of mining subsidence. Inżynieria Ekologiczna-Ecological Engineering, 42, 36–41.