PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling, exergy analysis and optimization of cement plant industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the recovery of wasted heat in the cement plant industries (Neka Cement Factory) in order to reduce the use of fossil fuels and greenhouse gas emissions. Cement is the most widely used man-made material. The global cement industry produces about 3.3 billion tons of cement annually. A lot of energy is needed to produce cement. About 200 kg of coal is used to produce each ton of cement. The cement industry also produces about five percent of the world's greenhouse gases. The method studied in this research is based on heat recovery from boilers installed at the outlet of a clinker cooler and a preheater in a cement factory. Due to the low temperature of the gases available, three different fluids, i.e. water, R134a and R245fa were considered as the operating fluids. Also, energy and exergy analyses are performed in a Rankin cycle and the selection of optimal parameters is considered by using genetic algorithm. The results of this study showed that water with optimized parameters leads to an increase in the production capacity from 5 to 9 MW. However, fluid R134a with optimized parameters leads to a 4% increase in exergy losses and it also increases the production capacity from 5 to 9 MW.
Rocznik
Strony
55--65
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Aerospace and Energy conversion Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Bibliografia
  • 1. Sun, Z., Liu, C., Xu, X., Li, Q., Wang, X., Wang, S. Chen, X., (2019). Comparative carbon and water footprint analysis and optimization of Organic Rankine Cycle. Applied Thermal Engineering, Vol. 158, pp .113769.
  • 2. Aldrian A, Viczek S, Pomberger R, Sarc R., (2020). Methods for identifying the material-recyclable share of SRF during co-processing in the cement industry. MethodsX, Feb Vol. 21, pp. 100837.
  • 3. Karami, E., Jafari, N. M. R. Porkhial, S., (2018). Thermodynamic and Thermoeconomic Optimization of an Organic Rankine Cycle for Heat Recovery from a Cement Plant.
  • 4. Ziviani, D., Beyene, A., Venturini, M., (2014). Advances and challenges in ORC systems modeling for low grade thermal energy recovery. Applied Energy, Vol. 121, pp. 79-95.
  • 5. Wei, D., Lu X., Lu Z., Gu J., (2007). Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Conversion and Management, Vol. 48, pp. 1113–1119.
  • 6. Al-Sulaiman, F., Dincer, I., Hamdullahpur, F., (2010). Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. Journal of Power Sources, Vol. 195, pp. 2346–2354.
  • 7. Garg P., Kumar P., Srinivasan K., Dutta P., (2013). Evaluation of carbon dioxide blends with isopentane and propane as working fluids for organic Rankine cycles. Applied Thermal Engineering, Vol. 52, pp. 439-448.
  • 8. Wang, H., Xu, J., Yang, X., Miao, Z., Yu, C., (2015). Organic Rankine cycle saves energy and reduces gas emissions for cement production. Energy, Vol. 86, pp. 59-73.
  • 9. Campana F., Bianchi M., Branchini L., De Pascale A., Peretto A., Baresi M., Fermi A., Rossetti N., Vescovo R., (2013). ORC waste heat recovery in European Energy intensive industries: Energy and GHG savings. Energy Conversion and Management, Vol. 76, pp. 244-52.
  • 10. Chen T., Zhuge W., Zhang Y., Zhang L., (2017). A novel cascade organic Rankine cycle (ORC) system for waste heat recovery of truck diesel engines. Energy Conversion and Management, Vol. 138, pp. 210-223.
  • 11. Nazari N., Heidarnejad P., Porkhial S., (2016). Multi-objective optimization of a combined steam-organic Rankine cycle based on exergy and exergo-economic analysis for waste heat recovery application. Energy conversion and management, Vol. 127, pp. 366-379.
  • 12. Technical Office Catalogs, CEP Unit., Calibration, Operating Room of Neka Cement Factory.
  • 13. Naik, S. S., Setty, Y. P., (2014). Optimization of parameters using response surface methodology and genetic algorithm for biological denitrification of wastewater. International Journal of Environmental Science and Technology, Vol. 11, No. 3, pp. 823-830.
  • 14. Behbahaninia, A., Bagheri, M., Bahrampoury, R., (2010). Optimization of fire tube heat recovery steam generators for cogeneration plants through genetic algorithm. Applied Thermal Engineering, Vol. 30, pp. 2378–2385.
  • 15. Esmaieli, A., Keshavarz, M. P., Shakib, S. E., Amidpour, M., (2012). Applying different optimization approaches to achieve optimal configuration of a dual pressure heat recovery steam generator. International Journal of Energy Research, Vol. 10, pp. 1002-2944.
  • 16. Ghasemi, A., Hashemian, N., Noorpoor, A., Heidarnejad, P., (2017). Exergy based optimization of a biomass and solar fueled CCHP hybrid seawater desalination plant. Journal of Thermal Engineering, Vol. 3, pp. 1034-1043.
  • 17. Ghasemi, A., Heidarnejad, P., Noorpoor, A., (2018). A novel solar-biomass based multi-generation Energy system including water desalination and liquefaction of natural gas system. Journal of Cleaner Production, Vol. 196, pp. 424-437.
  • 18. Sengupta, S., Datta, A., Duttagupta, S., (2007). Exergy analysis of a coal-based 210 MW thermal power plant. International Journal of Energy Research, Vol. 31, pp. 14-28.
  • 19. Rosen, M., Dincer, I., (2003). Exergoeconomic analysis of power plants operating on various fuels. Applied Thermal Engineering, Vol. 23, pp. 643-658.
  • 20. Esfahani, J. I., KyooYoo, C., (2014). Feasibility study and performance assessment for the integration of a steam-injected gas turbine and thermal desalination system. Desalination, Vol. 332, pp. 18–32.
  • 21. Riyanto H., Martowibowo S. Y., Maksum H., (2014). Application of genetic algorithm optimization for organic Rankine cycle waste heat recovery power generation. ASEAN Engineering Journal, Vol. 4, No. 2, pp. 22-28.
  • 22. Ahmed, A., Esmaeil, K. K., Irfan, M. A., Al- Design, F. A., (2018). Methodology of organic Rankine cycle for waste heat recovery in cement plants. Applied Thermal Engineering, Vol. 129, pp. 421-430.
  • 23. Wang J., Dai Y., Gao L., (2009). Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry. Applied Energy, Vol. 86, No. 6, pp. 941-948.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c54acf17-ea2a-4b11-bfc1-e9457f0e3a1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.