PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formowanie materiałów chitynowych przy zastosowaniu elektroprzędzenia

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Formation chitin materials with the use of electrospinning
Języki publikacji
PL
Abstrakty
EN
As part of the research, chitin materials were obtained using the electrospinning method. For this purpose, chitin solutions were prepared in phosphoric acid and lithium chloride in an am-ide solvent. The coagulation of chitin materials was performed in alkaline water baths and in distilled water. As a result of the method, microspheres and microfibers of chitin were ob-tained. The morphological structure of the obtained materials was analyzed using a scanning electron microscope (SEM) and an optical microscope. The obtained microspheres were characterized by a similar diameter value, amounting to 195 μm. In contrast, chitin microfi-bers from 90 to 150 μm. The obtained materials were subjected to mid-infrared and Raman spectrophotometric tests in order to determine the influence of the solvents used on the chemical structure of native and regenerated chitin. Infrared spectroscopy studies confirmed no changes in the chemical structure of regenerated chitin. Raman spectroscopy studies confirmed no degradation of regenerated chitin. In the spectra obtained, differences were observed in the form of changes in the shape of the bands for oscillators be associated in in-termolecular interactions, which is caused by changes in the supermolecular structure.
Słowa kluczowe
Rocznik
Strony
15--23
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
  • University of Bielsko-Biala, Department of Materials Engineering, Willowa 2, 43-309 Bielsko-Biała, Poland
autor
  • Graduate of the University of Bielsko-Biala, Poland
Bibliografia
  • 1. Biniaś D., Biniaś W., Janicki J. 2016. Application of Raman spectroscopy for evaluation of chemical changes in dibutyrylchitin fibres. Fibres and Textiles in Eastern Europe, 24, 27–38.
  • 2. Biqiong C., Kang S., Kebing Z. 2004. Rheological properties of chitin/lithium chloride, N,N-dimethylacetamide solutions. Carbohydrate Polymers, 58, 65–69.
  • 3. Blackwell J. 1969. Structure of β-chitin or parallel chain systems of poly-β-(1-t4)-N-acetyl-d-glucosamin. Biopolymers, 7, 281–298.
  • 4. Boerstoel H., Maatman H., Westering J.B., Koenders B.M. 2001. Liquid crystalline solutions of cellu-lose in phosphoric acid. Polymer, 42(17), 7371–7379.
  • 5. Bogdanova O.I., Polyakov D.K., Streltsov D.R., Bakirov A.V., Blackwell J., Chvalun S.N. 2016. Struc-ture of β-chitin from Berryteuthis magister and its transformation during whisker preparation and polymerization filling. Carbohydrate Polymers, 137, 678–684.
  • 6. Cárdenas G., Cabrera G., Taboada E., Miranda S.P. 2004. Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4), 1876–1885.
  • 7. de Vasconcelos C.L., Bezerril P.M., Pereira M.R., Ginani M.F., Fonseca J.L.C. 2011. Viscosity–temperature behavior of chitin solutions using lithium chloride/DMA as solvent. Carbohydrate Re-search, 346(5), 614–618.
  • 8. Ding F., Deng H., Du Y., Shi X., Wang Q. 2014. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 6(16), 9477–9493.
  • 9. Jaworska M., Gorak A. 2016. Modification of chitin particles with chloride ionic liquids. Materials Letters,164, 341–343.
  • 10. Kumirska J., Czerwicka M., Kaczyński Z., Bychowska A., Brzozowski K., Thöming J., Stepnowski P. 2010. Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs, 8(5), 1567–1636.
  • 11. Min B-M., Lee S.W., Lim J.N., You Y., Lee T.S., Kang P.H., Park W.H. 2004. Chitin and chitosan nan-ofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer, 45(21), 7137–7142.
  • 12. Prasad K., Murakami M., Kaneko Y., Takada A., Nakamura Y., Kadokawa J. 2009. Weak gel of chitin with ionic liquid, 1-allyl-3-methylimidazolium bromide. International Journal of Biological Macro-molecules, 45(3), 221–225.
  • 13. Rinaudo M. 2006. Chitin and chitosan: properties and applications. Progress in Polymer Science, 31(7), 603–632.
  • 14. Saito Y., Okano T., Gaill F., Chanzy H., Putaux J.L. 2000. Structural data on the intra-crystalline swell-ing of β-chitin. International Journal of Biological Macromolecules, 28(1), 81–88.
  • 15. Singh S.K. 2019. Solubility of lignin and chitin in ionic liquids and their biomedical applications. Inter-national Journal of Biological Macromolecules, 132(1), 265–277.
  • 16. Suenaga S., Totani K., Nomura Y., Yamashita K., Shimada I., Fukunaga H., Takahashi N., Osada M. 2017. Effect of acidity on the physicochemical properties of α- and β-chitin nanofibers. Interna-tional Journal of Biological Macromolecules, 102, 358–366.
  • 17. Vincendon M. 1997. Regenerated chitin from phosphoric acid solutions. Carbohydrate Polymers, 32, 233–237.
  • 18. Wu T., Wang G., Gao C., Chen Z., Feng L., Wang P., Zeng X., Wu Z. 2016. Phosphoric acid-based preparing of chitin nanofibers and nanospheres. Cellulose, 23, 477–491.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c54582da-a254-4b58-ad78-eec7f11e6452
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.