PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiplicity formulas for representations of transformation groupoids

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the representations of transitive transformation groupoids with the aim of generalizing the Mackey theory. Using the Mackey theory and a bijective correspondence between the imprimitivity systems and the representations of a transformation groupoid we derive the irreducibility theory. Then we derive the direct sum decomposition for representations of a groupoid together with the formula for the multiplicity of subrepresentations. We discuss a physical interpretation of this formula. Finally, we prove the claim analogous to the Peter–Weyl theorem for a noncompact transformation groupoid. We show that the representation theory of a transitive transformation groupoids is closely related to the representation theory of a compact groups.
Wydawca
Rocznik
Strony
42--50
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
autor
  • Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
Bibliografia
  • [1] Westman J., Harmonic analysis on groupoids, Pacific J. Math., 1968, 27, 621-632
  • [2] Boss R., Continuous representations of groupoids, 2007 [arXiv:math/0612639v3]
  • [3] Buneci M. R., Groupoid C*-algebras, Surveys in Mathematics and its Applications, ISSN 1842-6298, 2006, 1, 71-98
  • [4] Landsman K., Mathematical topics between classical and quantum mechanics, Springer, New York, 1998
  • [5] Pysiak L., Groupoids their representations and imprimitivity systems, Demonstratio Mathematica, 2004, 37 (3), 661-670
  • [6] Pysiak L., Imprimitivity theorem for groupoid representations, Demonstratio Mathematica, 2011, 44 (1), 29-48
  • [7] Renault J. N., A groupoid approach to C*-algebras, Lecture Notes in Math. 793, Springer-Verlag, New York, 1980
  • [8] Weinstein A., Groupoids: unifying internal and external geometry, Contemp. Math., 2001, 282, 1-19
  • [9] Heller M., Pysiak L., Sasin W., Noncommutative unification of general relativity and quantum mechanics, J. Math. Phys., 2005, 46 (12), 122501
  • [10] Heller M., Pysiak L., Sasin W., Noncommutative dynamics of random operators, Int. J. Theor. Phys., 2005, 44, 619-628
  • [11] Heller M., Pysiak L., Sasin W., Conceptual unification of gravity and quanta, Int. J. Theor. Phys., 2007, 46, 2494-2512
  • [12] Pysiak L., Time flow in a noncommutative regime, Internat. J. Theoret. Phys., 2007, 46 (1), 16-30
  • [13] Riefel M., Unitary representations induced from compact subgroups, Studia Mathematica, 1972, 42, 145-175
  • [14] Gilbert W., Modern algebra with applications, Wiley Interscience, 2003
  • [15] Varadarajan V., Geometry of quantum theory, Springer, New York, 1998
  • [16] Taylor M., Noncommutative harmonic analysis, Mathematical Surveys and Monographs, 1986, 22
  • [17] Mackey G., Imprimitivity for representations of locally compact groups I, Proceedings National Academy of Sciences, 1949, 35, 537-545
  • [18] Mackey G., The theory of unitary group representations, Chicago Lectures in Mathematics, Chicago, 1976
  • [19] Dixmier J., Von Neumann algebras, North Holland Publ. Comp., Amsterdam, 1981
  • [20] Amini M., Tannaka-Krein duality for compact groupoids I, Representation theory, 2003 [arXiv:math/0308259v1]
  • [21] Mackey G., The relationship between classical mechanics and quantum mechanics, Contemporary Mathematics, 1998, 214, 91-109
  • [22] Mackey G., Induced representations of locally compact groups I, Annals of Mathematics, 1952, 55, 101-139
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5452210-860e-44d2-a414-04ac6acc10cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.