PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of GA-Optimized Viscoelastic Models for the Characterization of Compression Behavior of Warp-Knitted Spacer Fabrics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, Warp-Knitted Spacer Fabrics (WKSF) have been widely used for many technical applications. Compressional behavior of WKSF is one of their important properties. Physical modeling is one of the solutions to predict these properties for engineered designing of WKSF. In this study, four common physical models are introduced and compared in order to simulate compressional behavior of polyester WKSF. Genetic Algorithm (GA) was applied to optimize each model parameter. The results showed that the Burger model has the highest adoption with 0.2 percent Mean Absolut Error (MAE). The effect of thickness, outer fabric structure and spacer monofilament density on viscoelastic properties of the samples were also studied.
Rocznik
Strony
209--215
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Textile Engineering Department, Yazd University, 89168-69511 Yazd, Iran
autor
  • Textile Engineering Department, Yazd University, 89168-69511 Yazd, Iran
autor
  • Textile Engineering Department, Yazd University, 89168-69511 Yazd, Iran
Bibliografia
  • [1] Liu, Y., Hu, H., (2011). Compression property and air permeability of weft-knitted spacer fabrics. Journal of Textile Institute, 102, 366-372.
  • [2] Sun, B., Hu, D., Gu, B., (2009). Transverse impact damage and energy absorption of 3-D multi-structured knitted composite. Composites, 40, 572-583.
  • [3] Liu, Y., Hu, H., Zhao, L., Long, H., (2011). Compression behavior of warp-knitted spacer fabrics for cushioning applications. Textile Research Journal, 82, 11-20.
  • [4] Du, Z., Hu, H., (2012). A study of spherical compression properties of knitted spacer fabrics Part I: Theoretical analysis. Textile Research Journal, 85, 1569-1578.
  • [5] Du, Z., Hu, H., (2012). A study of spherical compression properties of knitted spacer fabrics part II: comparison with experiments. Textile Research Journal, 83, 794-799.
  • [6] Liu, Y., Hu, H., (2014). An experimental study of compression behavior of warp-knitted spacer fabric. Journal of Engineering Fiber and Fabric, 9, 61-69.
  • [7] Chen, M.-y., Lai, K., Sun, R.-j., Zhao, W.-z., Chen, X., (2016). Compressive deformation and load of a spacer filament in a warp-knitted spacer fabric. Textile Research Journal, 65, 200-211.
  • [8] Shim, V., Tan, V., Tay, T., (1995). Modelling deformation and damage characteristics of woven fabric under small projectile impact. International Journal of Impact Engineering, 16, 585-605.
  • [9] Webster, J., Laing, R., Enlow, R., (1998). Effects of Repeated Extension and Recovery on Selected Physical Properties of ISO-301 Stitched Seams Part II: Theoretical Model. Textile Research Journal, 68, 881-888.
  • [10] Taylor, P., Pollet, D., (2002). Low-force dynamic lateral compression of fabrics. Textile Research Journal, 72, 845-853.
  • [11] Šajn, D., Geršak, J., Flajs, R., (2006). Prediction of stress relaxation of fabrics with increased elasticity. Textile Research Journal, 76, 742-750.
  • [12] Mihailovic, T., (2006). Complex estimation of bending elasticity of hemp woven fabric after washing treatment. International Journal of Clothing Science Technology, 18, 70-82.
  • [13] Halleb, N., Ben Amar, S., (2008). Prediction of fabrics mechanical behaviour in uni-axial tension starting from their technical parameters. Journal of Textile Institute, 99, 525-532.
  • [14] David, N., Gao, X.-L., Zheng, J., Masters, K., (2008). Three-Parameter Viscoelasticity Models for Ballistic Fabrics. in “the ASME 2008 International Mechanical Engineering Congress and Exposition, 459-466.
  • [15] Asayesh, A., Jeddi, A. A., (2010). Modeling the creep behavior of plain woven fabrics constructed from textured polyester yarn. Textile Research Journal, 80, 642-650.
  • [16] Gao, X., Sun, Y., Meng, Z., Sun, Z., (2012). Analytical approach of creep behavior of carpet yarn. Journal of Application Polymer Science, 124, 1160-1167.
  • [17] Mozafary, V., Payvandy, P., Jalili, M.M., (2014). Non-linear simulation of drying of plain knitted fabric using massspring-damper model and genetic algorithm optimization. International Journal of Advance Manufacturing Technology, 7, 67-76.
  • [18] Stepanovic, J., Stojiljkovic, D., Djordjic, D., Trajkovic, D., (2014). Elongation modeling of nonwoven geotextile materials/Modelarea alungirii materialelor geotextile netesute. Indian Texttile, 65, 90.
  • [19] Chattopadhyay, R., Kumar, B., Barik, P., (2015). Rheological model for compression of spacer fabrics. Fibers and Polymers, 16, 1554-1561.
  • [20] Stepanovic, J. M., Trajkovic, D., Stojiljkovic, D., Djordjic, D., (2015). Predicting the behavior of nonwoven geotextile materials made of polyester and polypropylene fibers. Textile Research Journal, 13, 1385-1397.
  • [21] Liu, Y., Hu, H., (2015). Compressive mechanics of warpknitted spacer fabrics. Part II: a dynamic model. Textile Research Journal, 85, 2020-2029.
  • [22] Lobo, F.G., Goldberg, D.E., (2004). The parameter-less genetic algorithm in practice. Information Sciences, 167, 217-232.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5401381-eb9f-4e21-bc62-09f601f69de3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.