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Abstract

In recent years, various models based on convolutional neural networks (CNN) have been
proposed to solve the cardiac arrhythmia detection problem and achieved saturated accu-
racy. However, these models are often viewed as “blackbox” and lack of interpretability,
which hinders the understanding of cardiologists, and ultimately hinders the clinical use
of intelligent terminals. At the same time, most of these approaches are supervised learn-
ing and require label data. It is a time-consuming and expensive process to obtain label
data. Furthermore, in human visual cortex, the importance of lateral connection is same
as feed-forward connection. Until now, CNN based on lateral connection have not been
studied thus far. Consequently, in this paper, we combines CNNs, lateral connection
and autoencoder (AE) to propose the building blocks of lateral connection convolutional
autoencoder neural networks (LCAN) for cardiac arrhythmia detection, which learn rep-
resentations in an unsupervised manner. Concretely, the LCAN contains a convolution
layer, a lateral connection layer, an AE layer, and a pooling layer. The LCAN detects
salient wave features through the lateral connection layer. The AE layer and competitive
learning is used to update the filters of the convolution network—an unsupervised process
that ensures similar weight distribution for all adjacent filters in each convolution layer
and realizes the neurons’ semantic arrangement in the LCAN. To evaluate the perfor-
mances of the proposed model, we have implemented the experiments on the well-known
MIT–BIH Arrhythmia Database. The proposed model yields total accuracies and kappa
coefficients of 98% and 0.95, respectively. The experiment results show that the LCAN
is not only effective, but also a useful tool for arrhythmia detection.
Keywords: convolutional neural network, arrhythmia detection, unsupervised learning,
ECG classification.

10.2478/jaiscr-2023-0014
  – 196Hai Van Pham, Pham Van Duong, Dinh Tuan Tran, Joo-Ho Lee

[14] Q. Shang, B. Zhang, H. Li, Y. Deng, Identifying
influential nodes: A new method based on network
efficiency of edge weight updating, Chaos: An In-
terdisciplinary Journal of Nonlinear Science 31 (3)
(2021) 033120.

[15] Pham, N. Van H, T. Quoc H., T. Van P, Phuong, The
proposed context matching algorithm and its ap-
plication for user preferences of tourism in covid-
19 pandemic, in: International Conference on In-
novative Computing and Communications. Lecture
Notes in Networks and Systems, Spinger, 2022, pp.
285–293.

[16] Y. Yang, X. Wang, Y. Chen, M. Hu, C. Ruan,
A novel centrality of influential nodes identifica-
tion in complex networks, IEEE Access 8 (2020)
58742–58751.

[17] Q. Zhang, X. Li, Y. Fan, Y. Du, An sei
3 r information propagation control algorithm
with structural hole and high influential infected
nodes in social networks, Engineering Applica-
tions of Artificial Intelligence 108 (2022) 104573.
https://doi.org/10.1016/j.engappai.2021.104573

[18] Y. Wang, H. Li, L. Zhang, L. Zhao, W. Li, Iden-
tifying influential nodes in social networks: Cen-
tripetal centrality and seed exclusion approach,
Chaos, Solitons & Fractals 162 (2022) 112513.
https://doi.org/10.1016/j.chaos.2022.112513

[19] F. Kazemzadeh, A. Asghar Safaei,
M. Mirzarezaee, S. Afsharian, H. Kosarirad,
https://www.sciencedirect.com/science/article/pii/
S0925231223002084 Determination of in-
fluential nodes based on the communities’
structure to maximize influence in social net-
works, Neurocomputing 534 (2023) 18–28.
https://doi.org/https://doi.org/10.1016/j.neucom.
2023.02.059 https://www.sciencedirect.com/
science/article/pii/S0925231223002084

[20] A. Zareie, R. Sakellariou, https://www. sciencedi-
rect.com/science/article/pii/S0306437923000157
Centrality measures in fuzzy social networks,
Information Systems 114 (2023) 102179.
https://doi.org/https://doi.org/10.1016/j.is.2023.
102179 https://www.sciencedirect.com/science/
article/pii/ S0306437923000157

[21] J. Zhang, Y. Luo, Degree centrality, betweenness
centrality, and closeness centrality in social net-
work, in: 2017 2nd international conference on
modelling, simulation and applied mathematics
(MSAM2017), Atlantis Press, 2017, pp. 300–303.

[22] Y.-H. Eom, D. L. Shepelyansky, Opinion forma-
tion driven by pagerank node influence on directed
networks, Physica A: Statistical Mechanics and its
Applications 436 (2015) 707–715.

[23] M. Lei, K. H. Cheong, Node influence ranking
in complex networks: A local structure entropy
approach, Chaos, Solitons & Fractals 160 (2022)
112136.

[24] A. Ullah, B. Wang, J. Sheng, J. Long, N. Khan,
Z. Sun, Identification of nodes influence based on
global structure model in complex networks, Sci-
entific Reports 11 (1) (2021) 1–11.

[25] Z. Li, T. Ren, X. Ma, S. Liu, Y. Zhang, T. Zhou,
Identifying influential spreaders by gravity model,
Scientific reports 9 (1) (2019) 1–7.

[26] A. Zareie, A. Sheikhahmadi, K. Khamforoosh,
Influence maximization in social networks based
on topsis, Expert Systems with Applications 108
(2018) 96–107.

[27] J.-X. Zhang, D.-B. Chen, Q. Dong, Z.-D. Zhao,
Identifying a set of influential spreaders in complex
networks, Scientific reports 6 (1) (2016) 1–10.

[28] C. Guo, L. Yang, X. Chen, D. Chen, H. Gao,
J. Ma, Influential nodes identification in complex
networks via information entropy, Entropy 22 (2)
(2020) 242.

[29] P. Liu, L. Li, S. Fang, Y. Yao, Identifying influen-
tial nodes in social networks: A voting approach,
Chaos, Solitons & Fractals 152 (2021) 111309.

[30] S. Kumar, D. Lohia, D. Pratap, A. Krishna,
B. Panda, Mder: modified degree with exclusion
ratio algorithm for influence maximisation in so-
cial networks, Computing 104 (2) (2022) 359–382.

[31] S. Samanta, V. K. Dubey, B. Sarkar, Measure of
influences in social networks, Applied Soft Com-
puting 99 (2021) 106858.

[32] X.-H. Yang, Z. Xiong, F. Ma, X. Chen, Z. Ruan,
P. Jiang, X. Xu, Identifying influential spreaders
in complex networks based on network embed-
ding and node local centrality, Physica A: Statis-
tical Mechanics and its Applications 573 (2021)
125971.

[33] J. Zhao, T. Wen, H. Jahanshahi, K. H. Cheong, The
random walk-based gravity model to identify in-
fluential nodes in complex networks, Information
Sciences 609 (2022) 1706–1720.

[34] H. V. Pham, D. H. Thanh, P. Moore, Hierarchi-
cal pooling in graph neural networks to enhance
classification performance in large datasets, Sen-
sors 21 (18) (2021) 6070.

[35] Q. M. Tran, H. D. Nguyen, T. Huynh, K. V.
Nguyen, S. N. Hoang, V. T. Pham, Measuring the
influence and amplification of users on social net-
work with unsupervised behaviors learning and ef-
ficient interaction-based knowledge graph, Journal
of Combinatorial Optimization (2021) 1–27.



182 Junming Zhang, Ruxian Yao, Jinfeng Gao, Gangqiang Li, Haitao Wu

1 Introduction

The Cardiovascular diseases are known as
”health killers” [1]. According to the report of the
World Health Organization, about 17 million peo-
ple die of cardiovascular diseases every year in the
world [2]. Research shows that most cardiovascu-
lar diseases are usually accompanied by arrhyth-
mia at the early stage [3]. Cardiac arrhythmia is
an important manifestation of cardiovascular dis-
ease [4]. Therefore, early monitoring of arrhyth-
mia plays a key role in the prevention of cardio-
vascular disease. Electrocardiography (ECG) is the
most basic and well established method of diagnos-
ing cardiac arrhythmia, as it is a non-invasive and
easy to use method that can provide useful infor-
mation on heart health and pathology [5]. Careful
study of the ECG by expert cardiologists is neces-
sary for the diagnosis of life threatening cardiac ar-
rhythmias. However, with the development of wear-
able devices, massive ECG data is acquired every
day. It is a time-consuming and tiresome task for
cardiologists to analyze these ECG data [6]. There-
fore, several methods are proposed for either fully
automatic arrhythmia detection or event selection
for further verification by human experts [6].

Most classical machine learning methods based
on the extraction of features from single-channel
ECG signal have been proposed, such as random
forest [7, 8] , support vector machines (SVMs) [9,
10], artificial neural networks [11, 12, 13], KNN
[14, 15, 16], and hidden Markov models [17, 18].
All these studies have achieved much better per-
formances. In general, these methods include the
following steps: noise removal, beat segmenta-
tion, feature extraction and classification. In these
processes, feature extraction is the most important
step. However, to design effective ECG features
are labor-intensive and require expert knowledge,
particularly of the restrictions on high-dimensional
data [19]. In addition, almost all the models
use shallow structures to process biosignals, which
may be inadequate to compute complex input [20],
such as ECG and electromyography (EMG) signals.
Moreover, with the increase of the number of ECGs,
the arrhythmia waveform becomes more complex,
and traditional arrhythmia feature extraction is dif-
ficult to better complete the task of automatic diag-
nosis of arrhythmia. Therefore, it is of great clinical

value and scientific significance to develop an effi-
cient and accurate algorithm for automatic diagno-
sis of arrhythmia.

In recent decades, the advancement of deep
learning makes it possible to learn feature automat-
ically. Different from the traditional methods, the
deep learning algorithm can use the original ECG
signal as the input for automatic feature learning
based on the probability distribution of the data set
[21]. Deep learning models consisting of multi-
ple processing layers, with each layer being able to
learn increasingly abstract, higher-level representa-
tions of the input data relevant to perform specific
tasks [21]. Uraab et al. [22] applied a 9-layer deep
convolutional neural network to automatically iden-
tify 5 different categories of heartbeats in ECG sig-
nals.Fiorina L et al. [23] used convolutional neural
network to process the original sampling points and
realized the automatic classification of ECG sig-
nals. Uslu et al. [24] proposed a multi-task network
to identify atrial fibrillation. Fan et al. [25] used
CNN multi-scale fusion method to screen atrial fib-
rillation symptoms and obtained advanced perfor-
mance. Lynn et al. [26] proposed a ECG classi-
fication method based on deep bidirectional GRU
network. Andersen et al. [27] used CNN and re-
current neural network (RNN) to extract deep level
features on RR interval for paroxysmal atrial fibril-
lation detection. Mousavi et al. [28] used 1D ECG
sequences and 2D image features as input, and then
used different depth neural networks on each chan-
nel for classification. Choi et al. [29] proposed a
reverse time attention mechanism in the prediction
task of heart failure to determine the impact of hos-
pitalization records and medical codes on the pre-
diction results.

All of these studies have achieved significantly
improved performance. However, they are super-
vised methods, meaning that they require labeled
data. With the emergence of wearable medical de-
vices, a vast amount of data has become available.
However, annotating this data is both expensive and
challenging. Therefore, utilizing a large amount of
unlabeled ECG data to diagnosis arrhythmia is very
important in the biomedical community. More im-
portantly, people do not know what knowledge the
deep models have learned from the data and how to
make the final decision. These end-to-end models
lead to a very weak interpretability [30]. In many
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fields, high requirements are put forward for the in-
terpretability of the models. For example, in terms
of detecting arrhythmia, the diagnosis of cardiol-
ogists largely depends on the results of machine
learning methods, but the lack of interpretability
limits the clinicians’ trust in such methods.

In accordance with this problem, many re-
searchers proposed different solutions. Koh et al.
[31] research the prediction effect of the deep learn-
ing model through the influence function. Zhang et
al. [32] added a simple yet effective loss for the
output feature map of each lter to push the lter to-
wards the representation of an object part. Lipton
et al. [33] first analyzed the connotation of inter-
pretability in the deep learning model from four as-
pects: trustworthiness, causality, transfer learning
and information provision. By combining the deep
neural network with first-order logic rules, the clas-
sification effect is significantly improved, showing
good interpretability [34]. Some researchers used
offline visualization [35-38], pattern transformation
[39-40] and diagnosis [41-42] of pretrained mod-
els’ representations. Although some have achieved
results, interpretability is always the Achilles’ heel
of CNN[32].

To address the aforementioned challenges, this
paper explores the enhancement of CNN using a
semantic arrangement mechanism of neurons [43].
As Kandel et al. [44] have noted, neurons in dif-
ferent regions of the human visual cortex are or-
ganized in columnar structures, such that adjacent
neurons can be activated by semantically similar in-
puts. Hubel et al. [45] further observed that neurons
in adjacent columnar structures respond strongly to
input patterns moving in the same direction. Neu-
rons that exhibit a strong response to the same di-
rectional input are typically located close to each
other in space [45]. It should be noted that this
arrangement of neurons in the visual cortex is not
innate, but rather, it is developed through train-
ing [46]. Therefore, if convolution neurons can
learn semantic arrangement expression, the inter-
pretability of CNN will be improved. Through liter-
ature analysis, we can see that almost all CNN mod-
els are feed-forward neural networks, that is, the
information transmission between neurons is uni-
directional. In the human visual neural network,
in addition to the feed-forward connection, there
are also a large number of lateral connections [47-

48]. Thus, if convolution neurons can learn to
express semantic arrangements, the interpretability
of CNNs will be greatly improved. However, en-
abling convolution neurons to exhibit the semantic
arrangement mechanism still poses a signify-cant
challenge

According to Kohonen [49], a self-organizing
feature mapping (SOM) network can accepts the
external input mode. It will be divided into dif-
ferent corresponding regions, each region has dif-
ferent response characteristics to the input mode,
and this process is automatically completed [49].
The fact of biological research shows that the or-
ganization principle of neurons is orderly arranged
in the sensory channels of the human brain [50].
Therefore, when the human brain receives specific
spatio-temporal information from the outside world
through the senses, specific areas of the cerebral
cortex will generate excitement, and similar exter-
nal information is continuously mapped in the cor-
responding areas [50]. For a certain pattern or a spe-
cific excitation process of a certain frequency, the
orderly arrangement of neurons and the continuous
mapping of external information are the biological
basis of competition mechanism in self-organizing
feature map networks [46]. Therefore, SOM can be
used to teach a CNN the semantic arrangement ex-
pression of a lateral connection.

The main issue with the self-organizing map
(SOM) is that when there are many neurons in the
network, some may never win [50]. These neurons
are commonly referred to as ’hard neurons.’ To
address this problem, Bebis et al. [50] proposed
a Kohonen algorithm with a conscience (SOFM-
C), which not only maintains topological invariance
mapping, but also effectively avoids the hard neuron
problem. From a machine learning perspective, the
optimization process of SOM can be viewed as an
encoder. However, evaluating the performance of
the encoder is a challenging problem. To tackle this,
we drew inspiration from the concept of the autoen-
coder (AE) [51], and incorporated a decoder to re-
construct raw samples. By doing so, the CNN with
lateral connections can learn semantic arrangement
expression and achieve better feature representa-
tion. In this study, we propose a novel model, the
lateral connection convolutional autoencoder neural
network (LCAN), to automate arrhythmia detection
by utilizing the feature representation capabilities
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of the LCAN. Most importantly, the proposed train-
ing algorithm is unsupervised, which is crucial for
portable ECG monitoring equipment.

The article is organized as follows: Section 2
presents the dataset and data description; Section
3 provides the details of SOFM-C, LCAN and the
unsupervised feature learning process. The experi-
mentation and discussion are presented in Section 4.
Finally, Section 5 concludes the proposed method
along with the future scope.

2 Dataset

For this study, the MIT-BIH Arrhythmia
database [52], hosted at PhysioNet (http://ww-
w.physionet.org), is used to evaluate the perfor-
mance of the proposed model. The database in-
cludes more than 4000 24-hour Holter recordings
of 47 patients25 males( age range 32 – 89 years)
and 22 females(age range 23 to 89 years). The 23
ECG recording signals beginning with No. 1 rep-
resent the common abnormal ECG signals in clin-
ical ECG detection. The 25 ECG recording sig-
nals starting with No. 2 represent some uncommon
ECG signal waveforms with very important clini-
cal symptoms. 201 and 202 ECG records are from
the same patient. Nearly 60% of these recordings
were obtained from patients. Each ECG is recorded
for about 30 minutes with a sampling frequency of
360Hz. Nearly 110000 heart beats were obtained by
dividing all records according to heart beats. Each
heart beat is labeled by two or more cardiologists.
According to the Association for the Advancement
of Medical Instrumentation (AAMI) specifications
[53], the MIT-BIH database can be grouped into
five arrhythmia groups: normal (N), supraventric-
ular ectopic (S), ventricular ectopic (V), fusion (F),
and unknown (Q). Table 1 shows the distribution of
the data over the training and testing sets for each
of the five types of arrhythmia. To get clean ECG
signals, Daubechies wavelet 6 filters [22] are used
to remove noises and artifacts.

Table 1. Distribution of five types of arrhythmia.

Class Training Testing All data
N 72471 18118 90589
S 2223 556 2779
V 5788 1448 7236
F 641 162 803
Q 6431 1608 8039
Total 87554 21892 109446

3 Method

3.1 SOFM-C

Assuming that the total number of training sam-
ples is N, the training set can be expressed as
X={X1, X2, . . . , XN}. Suppose there are K input
neurons and N output neurons, and the weight vec-
tor from the i-th input neuron to the j-th output neu-
ron is Wi j, where i∈ [1,N], j ∈ [1,K]. The SOFM-C
algorithm steps are as follows.

1. Initialization of the weight matrix
W={W1,W2,. . . ,WJ}, bias vector B={b1, b2,
. . . , bJ} is set equal to 1/J, learning rate
η0(0 < η0 < 1), the number of iterations is T, D
with small random numbers occurs, where J is
the number of neurons.

2. Calculation of the Euclidean distance between
the input training vector Xi and neuron j:

d ji =
J

∑
j=1

(Xj −Wj(t))2 −C(t)(
1
j
−b j) (1)

where t ≤ T.

3. Select the neuron with the smallest distance d j∗

as the winning neuron:

d j∗ = min jdi j (2)

4. Updating of the weight of the winner neuron j∗

and its neighbors:

Wj(t +1) =W j(t)+η(t) f ( j)(Xi −Wj(t)) (3)

where f ( j) = exp(−||w j −w j∗ ||22)/2sigma(t)2),
sigma(t) = 1

1+e−t ,η(t) = η0 ∗ exp(−t
10 ).
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5. Updating of the bias of the winner neuron:

b j∗(t +1) = b j∗(t)+D(1−b j∗(t)) (4)

C(t) =C(0)(1− t
T ). If t = tmax, then stop; other-

wise repeat by going to step 2.

3.2 Lateral connection convolutio-nal neu-
ral network

Each region of the human visual cortex is highly
connected [54-55]. These connections include feed-
forward connections between multiple levels, and
lateral connections between regions at the same
level [54-55]. The number of lateral connections
is far greater than that of feed-forward connections
[56]. This is illustrated in Figure 1 (a) where the
two consecutive convolutional layers and pooling
layers are shown. In essence, a common CNN is a
feed-forward neural network (FNN) without lateral
connection. In terms of function, lateral connec-
tion mechanism can greatly suppress noise by cre-
ating a competitive environment for neurons, which
is important for physiological signals, such as ECG.
Therefore, we propose a novel lateral connection
model: LCAN. As shown in Figure 1(b), LCAN
consists of consecutive convolution layer, lateral
connection layer and pool layer. As seen from Fig-
ure 1(b), each neuron is connected to other neurons
in the same lateral connection layer (dotted line).

Figure 1. The illustration of common CNN (a) and
a lateral connection CNN (b).

3.3 Unsupervised feature learning based
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convolution neuron is Z jZ = Z1,Z2, . . . ,Z j, . . . ,Zi.
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K

∑
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Wjk ∗Xk +b j (5)
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Z j =
[
Wj,1 Wj,2 · · · Wj,K

]



X
′
1

X
′
2

· · ·
X

′
K


 , (8)
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Hence, we can use matrix multiplication instead
of convolution calculation. According to Eq. (1)
and Eq. (8), SOFM-C can be used to train the fil-
ters of the LCAN.

Set input data Xk, the number of out-
put neurons is J. We first extract subset
X

′
k= {X

′
k,1,X

′
k,2, · · · ,X

′
k,d , · · · ,X

′
k,M−L+1} from Xk.

According to Eq. (7), we can calculate the out-
put feature map of each neuron. For example, for
input X

′
k,d , the output of each neuron can be written

as P={ p1,d , p2,d , p3,d, p4,d . . . , p j ,d , . . . , pJ,d }.

p j,d = X
′
k,dWj,k (9)

where X
′
k,d = [xk,d xk,d+1 · · · xk,d+L−1]. The re-

sult of Eq. (9) is a SOM network (Figure 2). There-
fore, we can use SOFM-C to train the filter Wj,k.

Figure 2. The calculation process of Eq. (9).

Suppose there are K input samples and J con-
volution neurons. Figure 3 shows the unsupervised
training process of LCAN in detail.

In the first phase, the filters of LCAN can be
trained by using SOFM-C. The process of Eq. (9)
can be regarded as encoder. To ensure that the
LCAN learns better feature representation, the de-
coder is used. According to Eq. (9), we can define
the decoder as follows:

X∗
k,d = p j,dW T

j,k (10)

As in literature [59], the cost function can be
defined as :

J = J(W,b)+β ∑
j=1

KL(ρ||
∧
ρ j) (11)

whereKL(ρ||
∧
ρ j)=ρ log ρ

∧
ρ j
+(1−ρ) log 1−ρ

∧
1−ρ j

, is a

constant, which controls the weight of sparsity
penalty factor. Suppose there are K input features
and j output neurons. The detailed decoder process
is shown in Figure 4

Figure 4. Decoder process of the LCAN

4 Experimentation

In order to measure the classification perfor-
mance of the proposed model, all experiment results
are evaluated with F1 score, total accuracy (TAC),
specificity, sensitivity, and kappa coefficient (KP)
[57-59].

TAC = T P+T N
T P+FN+FP+T N %,

precision = T P
T P+FP %,

recall = sensitivity = T P
T P+FN %,

specificity = T N
T N+FP %,

F1 = (2* recall * precision) / (recall + precision),
where TP, TN, FP and FN denote true positives, true
negatives, false positives and false negatives, re-
spectively. In this study, a ten-fold cross-validation
is used to assess the performance of the proposed
model. We implemented all the experiments us-
ing MATLAB 2019a and Python Google Tensor-
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Figure 3. Unsupervised training process of the LCAN.

Table 2. The parameters of the LCAN model

Layers Units Unit
Type

Size Stride Others

Input
BN
Con. 100 ReLU 6 × 1 1
LC. C(0)=1, η0=0.1,
AE = 0.1.
Pooling 3 × 1 2
Con. 100 ReLU 3 × 1 1
LC. C(0)=1, η0=0.1,
AE β =0.1.
Pooling 2 × 1 2
Con. 100 ReLU 3 × 1 1
LC. C(0)=1, η0=0.1,
AE β =0.1.
Pooling 2 × 1 2
Flatten
Dense 100 ReLU
Dense 100 ReLU
Dropout 0.46
Dense 5 Softmax

Con. denotes connection layer; LC. denotes lateral connection layer.
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Figure 5. The architecture of the proposed LCAN model.

flow 2.0 on a machine equipped with 64 GB mem-
ory and NVidia Geforce GTX 3080 GPU.

4.1 Experimental Setup

In the present study, a 17-layer LCAN (see Fig-
ure 5 ) was designed for the classification of car-
diac arrhythmia. The proposed model receives ECG
beats as inputs and classifies them into five distinct
classes, namely N, S, V, F and Q. More specifically,
use the following procedure to divide each ECG sig-
nal into separate beats: first, detect all R peaks, and
then define each pulse as 250 ms before R peak and
500 ms after R peak. In this way, a one-dimensional
ECG signals with 187 sample points are fed as the
input of the proposed model. Table 2 shows the de-
tailed parameters, such as the number of filters, the
size and stride in each convolution layer, the size
and stride of the kernel in each pooling layer.

We trained the proposed model with a max-
imum number of 300 epochs and a batch size
of 32 samples. The Adam optimizer is applied
to minimize the loss with a learning rate a =
0.001. To mitigate the effect of the overfitting
problem, a dropout technique with a probability
of retaining input units of 0.46 is used. The
main code of the proposed model is available on
the GitHub (https://github.com/hhzjm/automatic-
detection-of-arrhythmias).

4.2 Performance Results

To evaluate the proposed model performance,
we show the learn curves. Figure 6(a) shows the
curves of the loss curve during the training of the
model on the training and validation data. Fig.6(b)
shows the accuracy curves in the training and vali-
dation phases. From Figure 6, we can see that the
network converges for both values after 30 epochs.
Therefore, we think the training loss is not decreas-
ing, and the accuracy is not increasing with increas-
ing the number of epochs.

Table 3 presents the confusion matrix of the
LCAN about heartbeats using the test data. From
Table 3, we can see that the highest ACC, PRE,
SEN, SPEC and F1 values of the proposed model
for N, S, V, F and Q are 99.7%, 99.35%, 99.7%,
99.9% and 0. 993, respectively. The smallest ACC,
PRE, SEN, SPEC and F1 values of the LCAN for N,
S, V, F and Q are 98.76%, 79%, 81.5%, 94.25% and
0. 802, respectively. Table 4 shows the overall per-
formance of the LCAN. From Table 4, it is observed
that the values of the TAC, KP and MF1 are 98%,
0.95 and 0.92, respectively. Based on the above re-
sults, it can be deduced that the LCAN can correctly
classify most of the heartbeats. Meanwhile, com-
pared with the values of F1 in Table 3, we can ob-
serve that the proposed network model has a slight
difficulty classification some of the data belonging
to the S and F class. The reason is the class imbal-
ance problem existed in the dataset where the group
F has only 641 heartbeats and the group S has 2223
heartbeats (as shown in Table 1). An imbalanced
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dataset can negatively affect the performance of a
machine learning algorithm.

Figure 6. Training of the LCAN model: loss (a)
and accuracy (b) curves.

Table 4. Overall Performance of the LCAN (%).

models TAC KP MF1

LCAN 0.98 0.95 0.92

MF1: Macro-averaging of F1

To evaluate the efficiency of the LCAN, we im-
plemented two experimentations for comparison:

General CNN (CNN-1): CNN-1 is a supervised
CNN model. According to Fig.6, we removed the
lateral connection layer and AE layer, and the re-
maining model structure is CNN-1 (as shown in
Fig.7). It consists of three convolution layers, three
pooling layers, one batch normalization layer, a
dropout layer, two fully-connected layers, and one
softmax layer. The parameters of CNN-1 resemble
those of the LCAN.

Lateral connection CNN (CNN-2): As illus-
trated in Figure 8, CNN-2 is an unsupervised

model. A lateral connection layer is added after
each convolution layer. SOFM-C is used to train
the filters of CNN-2. From Fig.8, we can see
that there are three convolution layers, three lateral
connection layers, three pooling layers, one batch
normalization layer, a dropout layer, two fully-
connected layers, and one softmax layer. The pa-
rameters of CNN-2, such as the number of filters,
the size and stride in each convolution layer, re-
semble those of CNN-1. The hyper parameters of
the proposed model are chosen as follows: C(0)=1,
η0=0.1, D=0.03, epoch=400.

Table 5 presents the obtained classification re-
sults of the CNN-1 and CNN-2 models. From Ta-
ble 5, it is observed that the LCAN achieved high-
est 98% TAC, 0.95 KP and 0.92 MF1 followed by
CNN-1 with TAC, KP and MF1 of 95%, 0.9 and
0.85, respectively. The least recognizable model
is CNN-2 with TAC, KP and MF1 of 89%, 0.82
and 0.81, respectively. Compared with CNN-2, the
CNN-1 is a supervised model. This model can
better fit the raw ECG data distribution, which is
good for classification problems. Therefore, the
performance of CNN-1 better than that of CNN-
2. Although LCAN is an unsupervised model, it
can learn semantic arrangement expression by lat-
eral connection and better feature repression via AE
algorithm. Therefore, the performance of LCAN
better than that of CNN-1. In order to analyze this
reason, we show the learned filters from the three
models.

Table 5. Performance evaluation for the three
models (%).

models TAC KP MF1

CNN-1
CNN-2
LCAN

0.95
0.89
0.98

0.9
0.82
0.95

0.85
0.81
0.92

MF1: Macro-averaging of F1

Figure 9 depicts the learned features from
CNN-1, Figure 10 presents the learned features
from CNN-2, and Figure 11 shows the learned fea-
tures from LCAN.
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Table 3. Presents the confusion matrix of the LCAN about heartbeats using the test data.

Predicted Per-class Performance(%)
N S V F Q ACC PRE SEN SPEC F1

Actual N 18064 23 26 3 2 98.76 98.9 99.7 94.25 99.3
S 83 461 6 4 2 99.39 92.2 82.9 99.8 87.3
V 70 9 1342 22 5 99.25 95.86 92.68 99.7 94.2
F 16 3 10 132 1 99.7 79 81.5 99.8 80.2
Q 48 4 16 6 1534 99.6 99.35 95.4 99.9 97.3

ACC: accuracy; PRE: precision; SEN: sensitivity, SPEC: specificity

Figure 7. The architecture of the CNN-1.

Figure 8. The architecture of the CNN-2.
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Figure 9. Learned features from CNN-1.

Figure 10. Learned features from CNN-2

Figure 11. Learned features from LCAN.

From Figure 9, we can see that learned features
of CN N-1 are irregular and scattered. The rea-
son maybe that the CNN-1 is a “black box” model.
This model learns features through backpropaga-
tion (BP) algorithm. Therefore, the training process
of model is irregular and difficult to understand.
Compared with Figure 9 and 10, we observe that the
learned features of CNN-2 are more concentrated,
which is reminiscent of the arrangement of neurons
in the V1 region of the human visual cortex. The
semantic arrangement expression significantly en-
hances the interpretability and performance of the
proposed model. Furthermore, as shown in Fig-

ure 10, certain filters (indicated by red and green
circles) exhibit a distribution that is similar to the
Mexican hat function. These diverse Mexican hat
functions can extract different multiscale features
[60], which is advantageous for arrhythmia classi-
fication.

4.3 Compared With Existing Models

In order to prove the usefulness of the proposed
model in this paper, a comparative results based on
the MIT-BIH Dataset are listed in Table 6. These
studies include the residual network-based model
framework proposed by Hannun et al. [63], the
transformer-based deep neural network proposed
by Hu et al. [64] and the network model com-
bining RNN network with attention proposed by
Mousavi et al. [65]. The purpose of the com-
parison is not to prove that the proposed model
is superior to the existing methods, but to explore
the feasibility of the unsupervised method for ar-
rhythmia detection. From table 6, we can see that
Ref. [64] has obtained the best performance with
TAC 99.5% and F1 0.94. The reasons for excel-
lent performance are that multi-head attention, self-
attention and supervised training algorithm were
used in this paper. Compared with LCAN, the struc-
ture of model in Ref. [64] is relatively complex.
Table 6 also shows that Ref. [66] has achieved
good performance in identifying eleven classed of
ECG events. A preprocessing step was used in Ref.
[66], which not only model the peak characteris-
tics of ECG, but also preserve signal structure and
morphology. Compared with existing models, the
proposed method also obtains a better classification
performance for arrhythmia detection. Therefore, it
is a useful decision-support tool for automatic ar-
rhythmia detection. More importantly, our method
is unsupervised learning. It is impossible to score
labeled data from portable wearable ECG devices.
Hence, unsupervised method is critical for these de-
vices.

5 Conclusion

In this paper, for the problems of dependence
labeled data and poor interpretability of deep learn-
ing model in the classification of ECG events, we
carried out relevant research. Finally, a novel lateral
connection network with learnable semantic feature
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Table 6. Performance comparison with other studies.

Method Feature extraction classes TAC F1
[63]
[64]
[65]
[67]
[68]
[69]
[70]
[71]
[66]
LCAN

Deep learning
Deep learning
Deep learning
Deep learning
Handcrafted features
Deep learning
Handcrafted features
Deep learning
Deep learning
Deep learning

5
4
5
5
2
4
5
5
11
5

98%
99.5%
97.6%
94%
99%
97.37
99.5%
99.4%
97.63%
98%

0.897
0.94
0.858
—
—
—
—
0.958
0.926
0.92

representation is proposed. Figure 11 shows that the
proposed model can learn semantic feature repre-
sentation, which resembles the arrangement of neu-
rons in the V1 region of the human visual cortex.
This learned semantic feature representation helps
improve network interpretability. Table 5 indicates
that the proposed model obtains excellent perfor-
mance with a KP of 0.95, an F1 of 0.92, and a TAC
of 98%. Results evidence that the proposed model
and training method are useful and effective. The
proposed method does not need to design features.
It can learn features from raw ECG signals, which
can be adapted to other time serial data, such as
those derived from EEG and EMG. Moreover, the
proposed method is unsupervised, making it highly
suitable for application in home sleep monitoring
equipment.

In this study, we propose a novel unsupervised
network and explore its availability. From Table
6, we can see that the classification performance
of LCAN is not the best. The promising results
will motivate continued exploration. Future work
include Eq. (1) improving the performance of clas-
sification of LCAN by adding a recursive operation
that can use contextual information; Eq. (2) Clas-
sification of ECG signal fragments containing mul-
tiple classes, and Eq. (3) testing the efficiency of
LCAN using other physiological signals.
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LCAN using other physiological signals.
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