PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical surge modeling based on the pressure oscillations in the stable operation range of the compressor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Prevention of surge phenomenon is a very active field of research in last decades. The Greitzer model is the most widely applied mathematical model describing the surge phenomenon. Two parameters that characterize the given compressing system: the Helmholtz oscillator frequency and the so-called B parameter have to be given as the input to Greitzer model. Although those parameters are easy to determine for simplified compressor models, they are extremely hard to predict in case of real industrial compressors. Moreover, in most cases it is impossible to analyse compressor unstable work, which makes this prediction even more speculative. Therefore the method that determines the parameters basing on the compressor stable operation is indispensable. In paper the regularly perturbed Greitzer model based method of predicting the behaviour of a compressor in the unstable operation basing on signals from its stable operation is proposed and discussed.
Słowa kluczowe
Rocznik
Tom
Strony
91--108
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Institute of Turbomachinery, Lodz University of Technology, 219/223 Wólczańska, 90-924 Łódź, Poland
Bibliografia
  • [1] Emmons H.W., Pearson C.E., Grant H.P.: Compressor surge and stall propagation. Trans. ASME 77(1955), 455–467.
  • [2] Moore F.K.,Greitzer E.M.: A theory of post-stall transients in axial compression systems: Part II – Application. J. Eng. Gas Turb. Power 108(1986), 2, 231–239.
  • [3] Abed E.H., Houpt P.K., Hosny W.M.: Bifurcation analysis of surge and rotating stall in axial flow compressions. In: Proc. American Control Conf., 1990, 2239–2246.
  • [4] Liaw D., Chang S.: Bifurcation analysis of a centrifugal compressor. In: Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, 2011, 1538–1543.
  • [5] Greitzer E.M.: Surge and rotating stall in axial flow compressors – Part I Theoretical compression system model. J. Eng. Power 98(1976), 2, 190–198.
  • [6] Greitzer E.M.: Surge and rotating stall in axial flow compressors – Part II: Experimental results and comparison with theory. J. Eng. Power 98(1976), 2, 199–211.
  • [7] Moore F.K., Greitzer E.M.: A theory of post-stall transients in axial compression systems: Part I – Development of equations. J. Eng. Gas Turb. Power 108(1986), 1, 68–76.
  • [8] Moore F.K., Greitzer E.M.: A theory of post-stall transients in axial compression systems: Part II – Application. J. Eng. Gas Turb. Power 108(1986), 2, 231–239.
  • [9] Willems F.P.T.: Modeling and bounded feedback stabilization of centrifugal compressor surge. PhD thesis, Technische Universiteit Eindhoven, Eindhoven 2000.
  • [10] Hansen K.E., Jorgensen P., Larsen P.S.: Experimental and theoretical study of surge in a small centrifugal compressor. J. Fluids Eng. 103(1981), 3, 391–395.
  • [11] Meuleman C., Willems F., de Lange R., de Jager B.: Surge in a low-speed radial compressor. In: Proc. 43rd Int. Gas Turbine and Aeroengine Cong. ASME, Paper 98-GT-4261998.
  • [12] Fink D.A., Cumpsty N.A., Greitzer E.M.: Surge dynamics in a free-spool centrifugal compressor system. In: ASME 1991 Int. Gas Turbine and Aeroengine Cong. Exp. ASME, 1991, 001T01A010.
  • [13] Liskiewicz G.: Numerical model of the flow phenomena preceding surge in the centrifugal blower and assessment of its applicability in designing anti-surge devices. PhD thesis, University of Strathclyde, Lodz University of Technology, Lodz 2014.
  • [14] Horodko L.: Application of time-frequency signal analysis to investigation of unstable operation of radial compressor. Technical Report 990, Lodz University of Technology, Łódź 2006 (in Polish).
  • [15] Yoon S.Y., Lin Z., Goyne C., Allaire P.E.: An enhanced greitzer compressor model with pipeline dynamics included. In: American Control Conference (ACC), 2011, 4731–4736.
  • [16] Van Helvoirt J., De Jager B.: Dynamic model including piping acoustics of a centrifugal compression system. J. Sound Vibration 302(2007), 1, 361–378.
  • [17] Van Helvoirt J., de Jager B., Steinbuch M., Smeulers J.: Stability parameter identification for a centrifugal compression system. In: 43rd IEEE Conf. on Decision and Control, CDC. 4, 2004, 3400–3405.
  • [18] Willems F. and de Jager B.: Modeling and control of compressor flow instabilities. Control Systems 19(1999), 5, 8–18.
  • [19] Grapow F.: Projekt systemu antypompazowego dla stanowiska dmuchawy odśrodkowej. BSc thesis, Lodz Unviersity of Technology, Łódź 2015 (in Polish).
  • [20] Liśkiewicz G., Horodko L., Stickland M., Kryłłowicz W.: Identification of phenomena preceding blower surge by means of pressure spectral maps. Exp. Thermal Fluid Sci. 54(2014), 267–278.
  • [21] Garcia D., Stickland M., and Liskiewicz G.: Dynamical system analysis of unstable flow phenomena in centrifugal blower. Open Eng. 5(2015), 1, 332–342.
  • [22] Liskiewicz G., Horodko L.: Time-frequency analysis of the surge onset in the centrifugal blower. Open Eng. 5(2015), 1, 299–306.
  • [23] Kuz’min V.A. and Khazhuev V.N.: Measurement of liquid or gas flow (flow velocity) using convergent channels with a witoszynski profile. Measurement techniques 36(1993), 3, 288– 296.
  • [24] Brigham E.O., Morrow R.E.: The fast Fourier transform. Spectrum, IEEE 4(1967), 12, 63–70.
  • [25] Willems F., Heemels W.P., De Jager B., Stoorvogel A.A.: Positive feedback stabilization of centrifugal compressor surge. Automatica 38(2002), 2, 311–318.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c53b39b8-5d7b-4baf-b5ff-5a5461199a6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.