PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Explorative study of rotary tube piercing process for producing titanium alloy thick-walled tubes with bi-modal microstructure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to solve the existing problems in the manufacturing of titanium alloy thick-walled tubes (TATWs), an innovative plastic forming method for the preparation of TATWs using rotary tube piercing (RTP) process was studied. In this paper, the advantages and basic principles of the RTP process were described. A new finite element model is established to study the effect of the thermal parameters on the RTP process of TATWs. Based on the control variable method, two key problems of rolling block and severe temperature rise in the RTP process were all solved, and the TATWs with bi-modal microstructure were produced by the self-developed piercing mill. In addition, the microstructure uniformity of the pierced tube was analyzed. Based on the experimental and numerical investigations, it's found that the RTP process is a viable process for manufacturing TATWs with bi-modal microstructure.
Rocznik
Strony
1451--1463
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
autor
  • School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Bibliografia
  • [1] M. Salem, M. Heydari, A new approach in modeling of guide and conical rolls in the ring rolling process, Int. J. Adv. Manuf. Technol. 81 (2015) 1831–1843.
  • [2] K.H. Lee, D.C. Ko, D.H. Kim, S.B. Lee, N.M. Sung, B.M. Kim, Control method for centering rolls in radial–axial ring rolling process, Int. J. Precis. Eng. Manuf. 15 (2014) 535–544.
  • [3] W.J. Zhang, X.Y. Song, S.X. Hui, W.J. Ye, Y.L. Wang, W.Q. Wang, Tensile behavior at 700 8C in Ti–Al–Sn–Zr–Mo–Nb–W–Si alloy with a bi-modal microstructure, Mater. Sci. Eng. A 595 (2014) 159–164.
  • [4] N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh, B. Aditya, Failure and formability studies in warm deep drawing of Ti–6Al–4V alloy, Mater. Des. 60 (2014) 540–547.
  • [5] W. Zhang, X. Jiao, Y. Yu, J. Yang, Y. Feng, Microstructure and properties of 3.5 vol.% TiBw/Ti6Al4V composite tubes fabricated by hot-hydrostatic extrusion, J. Mater. Sci. Technol. 30 (2014) 710–714.
  • [6] C. Wang, H.J.M. Geijselaers, E. Omerspahic, V. Recina, A.H. van den Boogaard, Influence of ring growth rate on damage development in hot ring rolling, J. Mater. Process. Technol. 227 (2016) 268–280.
  • [7] V.P. Romanenko, D.V. Sizov, Evaluating the adequacy of a mathematical model of the piercing of a billet into an ultrathick-walled shell on a two-high rotary rolling mill, Metallurgist 57 (2014) 830–836.
  • [8] Y.Q. Zhao, J.H. Mao, F.F. Liu, Z.H. Ma, Experiments and simulation on mannesmann piercing process in the drill steel manufacture, Strength Mater. 47 (2015) 29–40.
  • [9] M.M. Skripalenko, V.E. Bazhenov, B.A. Romantsev, M.N. Skripalenko, T.B. Huy, Y.A. Gladkov, Mannesmann piercing of ingots by plugs of different shapes, Met. Sci. J. 32 (2016) 1712–1720.
  • [10] P.F. Bariani, S. Bruschi, A. Ghiotti, Advances in predicting damage evolution and fracture occurrence in metal forming operations, J. Manuf. Process. 14 (2012) 495–500.
  • [11] F. Liu, Y.L. Qiu, Z.H. Song, S.W. Wang, Numerical simulation of the piercing process of large-sized seamless steel tube, Appl. Mech. Mater. 319 (2013) 444–450.
  • [12] X. Yajing, X. Xianze, Z. Shuqi, D. Chao, Z. Jie, L. Mingqiang, TC4 titanium alloy seamless blooms made by rotary piercing, Rare Met. Lett. 1 (2008).
  • [13] P. Jiming, X. Yajing, Q. Henglei, D. Chao, M. Xiaoju, Y. Jianchao, J. Jianhui, Study on microstructure and properties of titanium and titanium alloy tube blanks manufactured by different methods, Titan. Ind. Prog. 4 (2010) 14.
  • [14] Y. Shuang, F. Wang, Q. Wang, Explorative study of tandem skew rolling process and equipment for producing seamless steel tubes, J. Mech. Eng. 214 (2017) 1597–1604.
  • [15] B. Du, C. Zhao, G. Dong, J. Bi, FEM-DEM coupling analysis for solid granule medium forming new technology, J. Mater. Process. Technol. (2017).
  • [16] H.H. Lee, J.I. Yoon, H.S. Kim, Single-roll angular-rolling: a New continuous severe plastic deformation process for metal sheets, Scr. Mater. 146 (2018) 204–207.
  • [17] Y. Li, J. Huang, G. Huang, W. Wang, J. Chen, Z. Zeng, Comparison of radial forging between the two-and threesplit dies of a thin-walled copper tube during tube sinking, Mater. Des. 56 (2014) 822–832.
  • [18] Y.Q. Zhao, J.H. Mao, Effects of feed angle on Mannesmann piercing in drill steel production, Adv. Mater. Res. 915–916 (2014) 996–999.
  • [19] Y. De Yin, M.J. Wang, S.Z. Li, P.Z. Wang, X.D. Wang, G.T. Li, Influence of roll rotational speed on inside bore and lamination defects in rotary piercing large diameter heavy wall P92 steel pipe process, Appl. Mech. Mater. 421 (2013) 205–211.
  • [20] Z. Pater, J. Bartnicki, J. Kazanecki, 3D finite elements method (FEM) analysis of basic process parameters in rotary piercing mill, Metalurgija 27 (2012) 257–263.
  • [21] S.H.S. Gyeongsang, J.M.C. Gnu, M.C.L. Gnu, Finite element analysis of a Mannesmann rollpiercing process, Proc. Jpn. Soc. Technol. Plast. 2 (2011) 515–516.
  • [22] X. Ding, Y. Shuang, Q. Liu, C. Zhao, New rotary piercing process for an AZ31 magnesium alloy seamless tube, Mater. Sci. Technol. 836 (2017) 1–11.
  • [23] X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, G.L. Chen, Microstructural control of TiAl–Nb alloys by directional solidification, Acta Mater. 60 (2012) 498–506.
  • [24] P. Gao, Y. Cai, M. Zhan, X. Fan, Z. Lei, Crystallographic orientation evolution during the development of tri-modal microstructure in the hot working of TA15 titanium alloy, J. Alloys Compd. 741 (2018) 734–745.
  • [25] M.R. Jandaghi, H. Pouraliakbar, G. Khalaj, M.J. Khalaj, A. Heidarzadeh, Study on the post-rolling direction of severely plastic deformed Aluminum–Manganese–Silicon alloy, Arch. Civ. Mech. Eng. 16 (2016) 876–887.
  • [26] H. Pouraliakbar, M.R. Jandaghi, S.J.M. Baygi, G. Khalaj, Microanalysis of crystallographic characteristics and structural transformations in SPDed Al Mn Si alloy by dualstraining, J. Alloys Compd. 696 (2017) 1189–1198.
  • [27] H. Pouraliakbar, M.R. Jandaghi, G. Khalaj, Constrained groove pressing and subsequent annealing of Al–Mn–Si alloy: microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance, Mater. Des. 124 (2017) 34–46.
  • [28] B. Qiu, J. Li, Numerical investigations on the heat transfer behavior of brush seals using combined computational fluid dynamics and finite element method, J. Heat Transfer. 135 (2013) 122601.
  • [29] B. Fekete, A. Szekeres, Investigation on partition of plastic work converted to heat during plastic deformation for reactor steels based on inverse experimental–computational method, Eur. J. Mech. 53 (2015) 175–186.
  • [30] Y. Zheng, D. Liu, Y. Yang, Z. Zhang, X. Li, R. Zhang, Microstructure evolution of Ti–6Al–4V with periodic thermal parameters during axial closed die rolling process, J. Alloys Compd. 735 (2018) 996–1009.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c536ddac-ec9a-43f2-bb32-0b4ea89020d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.