PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Limit theory for planar Gilbert tessellations

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Gilbert tessellation arises by letting linear segments (cracks) in R2 unfold in time with constant speed, starting from a homogeneous Poisson point process of germs in randomly chosen directions. Whenever a growing edge hits an already existing one, it stops growing in this direction. The resulting process tessellates the plane. The purpose of the present paper is to establish a law of large numbers, variance asymptotics and a central limit theorem for geometric functionals of such tessellations. The main tool applied is the stabilization theory for geometric functionals.
Rocznik
Strony
149--160
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
  • Faculty of Mathematics & Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
autor
  • Faculty of Mathematics & Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
  • [1] Yu. Baryshnikov and J. E. Yukich, Gaussian limits for random measures in geometric probability, Ann. Appl. Probab. 15, 1A (2005), pp. 213-253.
  • [2] S. N. Chiu, A central limit theorem for linear Kolmogorov’s birth-growth models, Stochastic Process. Appl. 66 (1997), pp. 97-106.
  • [3] S. N. Chiu and H. Y. Lee, A regularity condition and strong limit theorems for linear birth-growth processes, Math. Nachr. 241 (2002), pp. 21-27.
  • [4] S. N. Chiu and M. P. Quine, Central limit theory for the number of seeds in a growth model in Rd with inhomogeneous Poisson arrivals, Ann. Appl. Probab. 7 (1997), pp. 802-814.
  • [5] S. N. Chiu and M. P. Quine, Central limit theorem for germination-growth models in Rd with non-Poisson locations, Adv. in Appl. Probab. 33 (2001), pp. 751-755.
  • [6] C. Cotar and S. Volkov, A note on the lilypond model, Adv. in Appl. Probab. 36 (2004), pp. 325-339.
  • [7] D. J. Daley and G. Last, Descending chains, the lilypond model and mutual-nearest-neighbour matching, Adv. in Appl. Probab. 37 (2005), pp. 604-628.
  • [8] N. H. Gray, J. B. Anderson, J. D. Devine and J. M. Kwasnik, Topological properties of random crack networks, Math. Geol. 8 (1976), pp. 617-626.
  • [9] O. Haeggstroem and R. Meester, Nearest neighbour and hard sphere models in continuum percolation, Random Structures and Algorithms 9 (1996), pp. 295-315.
  • [10] M. Heveling and G. Last, Existence, uniqueness, and algorithmics computation of general lilypond systems, Random Structures and Algorithms 29 (2006), pp. 338-350.
  • [11] L. Holst, M. P. Quine and J. Robinson, A general stochastic model for nucleation and linear growth, Ann. Appl. Probab. 6 (1996), pp. 903-921.
  • [12] M. S. Makisack and R. E. Miles, Homogeneous rectangular tessellations, Adv. in Appl. Probab. 28 (1996), pp. 993-1013.
  • [13] L. Muche and D. Stoyan, Contact and chord length distributions of the Poisson Voronoi tessellation, J. Appl. Probab. 29 (1992), pp. 467-471.
  • [14] M. D. Penrose, Gaussian limits for random geometric measures, European Journal of Probability 12 (2007), pp. 989-1035.
  • [15] M. D. Penrose, Laws of large numbers in stochastic geometry with statistical applications, Bernoulli 13 (2007), pp. 1124-1150.
  • [16] M. D. Penrose and J. E. Yukich, Central limit theorems for some graphs in computational geometry, Ann. Appl. Probab. 11 (2001), pp. 1005-1041.
  • [17] M. D. Penrose and J. E. Yukich, Limit theory for random sequential packing and deposition, Ann. Appl. Probab. 12 (2002), pp. 272-301.
  • [18] M. D. Penrose and J. E. Yukich, Weak laws of large numbers in geometric probability, Ann. Appl. Probab. 13 (2004), pp. 277-303.
  • [19] M. D. Penrose and J. E. Yukich, Normal approximation in geometric probability, in: Stein’s Method and Applications, A. D. Barbour and Louis H. Y. Chen (Eds.), Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Vol. 5 (2005), pp. 37-58.
  • [20] T. Schreiber, Limit theorems in stochastic geometry, in: New Perspectives in Stochastic Geometry, W. S. Kendall and I. Molchanov (Eds.), Oxford University Press, 2009, pp. 111-144.
  • [21] D. Stoyan, W. Kendall and J. Mecke, Stochastic Geometry and Its Applications, second edition, Wiley, Chichester 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c536161c-c2b2-4165-8f70-75cf01e8f5c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.