Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the uncertainty of measurement paths was estimated using selected statistical methods. Specifically, temperature measurements obtained from contact temperature sensors used in a heat transfer test section were investigated. The experiments utilized a dry-well temperature calibrator, thermoelements (types K, J, N, and T), and a data acquisition station. Additionally, a certified Pt-100 resistance sensor connected to the temperature meter was considered during measurements. The temperature range for the selected measurement points was 0.3 to 100 °C, covering both increasing and decreasing temperatures. To calculate the expanded uncertainty, both the uncertainty propagation method and the Monte Carlo method were employed. The results were analyzed and found to be similar.
Rocznik
Tom
Strony
627--634
Opis fizyczny
Bibliogr. 35 poz., rys. fot.
Twórcy
autor
- Kielce University of Technology
autor
- Kielce University of Technology
- beatam@tu.kielce.pl
autor
- Kielce University of Technology
autor
- Kielce University of Technology
autor
- Kielce University of Technology
Bibliografia
- [1] M. Piasecka, S. Hozejowska, and M. E. Poniewski, “Experimental evaluation of flow boiling incipience of subcooled fluid in a narrow channel,” Int. J. Heat Fluid Flow, vol. 25, no. 2, pp. 159-172, Apr. 2004, https://doi.org/10.1016/j.ijheatfluidflow.2003.11.017
- [2] B. Maciejewska and M. Piasecka, “Trefftz function-based thermal solution of inverse problem in unsteady-state flow boiling heat transfer in a minichannel,” Int. J. Heat Mass Transf., vol. 107, pp. 925-933, Apr. 2017, https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.003
- [3] B. Maciejewska, M. Piasecka, and A. Piasecki, “The Study of the Onset of Flow Boiling in Minichannels: Time-Dependent Heat Transfer Results,” Heat Transf. Eng., vol. 43, no. 3-5, pp. 223-237, Mar. 2022, https://doi.org/10.1080/01457632.2021.1874181
- [4] M. Piasecka, B. Maciejewska, and A. Piasecki, “Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements,” Energies, vol. 16, no. 3, p. 1222, Jan. 2023, https://doi.org/10.3390/en16031222
- [5] M. Piasecka, K. Strąk, and B. Maciejewska, “Heat transfer characteristics during flow along horizontal and vertical minichannels,” Int. J. Multiph. Flow, vol. 137, p. 103559, Apr. 2021, https://doi.org/10.1016/j.ijmultiphaseflow.2021.103559
- [6] G. Liu, L. Guo, C. Liu, and Q. Wu, “Evaluation of different calibration equations for NTC thermistor applied to high-precision temperature measurement,” Measurement, vol. 120, pp. 21-27, May 2018, https://doi.org/10.1016/j.measurement.2018.02.007
- [7] N. J. J. Shirbhate and G. K. K. Dhongade, “Calibration of K Type Thermocouple for Measurement of Temperature in Laboratory Equipment,” Int. J. Mech. Eng. Rob. Res, vol. 3, no. 2, pp. 289-292, 2014, [Online]. Available: www.ijmerr.com
- [8] Z. L. Warsza and A. Idźkowski, “Uncertainty Analysis of the Two-Output RTD Circuits on the Example of Difference and Average Temperature Measurements,” 2019, pp. 435-446. https://doi.org/10.1007/978-3-030-15857-6_43
- [9] S. K. Sen, T. K. Pan, and P. Ghosal, “An improved lead wire compensation technique for conventional four wire resistance temperature detectors (RTDs),” Measurement, vol. 44, no. 5, pp. 842-846, Jun. 2011, https://doi.org/10.1016/j.measurement.2011.01.019
- [10] E. Pawłowski, A. Szlachta, and P. Otomański, “The Influence of Noise Level on the Value of Uncertainty in a Measurement System Containing an Analog-to-Digital Converter,” Energies, vol. 16, no. 3, p. 1060, Jan. 2023, https://doi.org/10.3390/en16031060
- [11] “Czaki Thermo-Product, Data Sheet - Temperature sensor: TP-361.” https://www.czaki.pl/en/produkt/temperature-sensor-tp-361/
- [12] “Czaki Thermo-Product, Data Sheet - Portable Temperature Meter EMT-55, available online: https://www.czaki.pl/en/produkt/emt-55-pocket-temperature-meter-for-pt100-platinum-sensor/
- [13] G. Li et al., “Development of boiling flow pattern map and heat transfer correlation of R32-oil mixture inside a horizontal micro-fin tube,” Int. J. Refrig., vol. 155, no. August, pp. 320-332, 2023, https://doi.org/10.1016/j.ijrefrig.2023.08.017
- [14] J. Li, H. Zhai, L. Shi, N. Tan, Y. Zhang, and C. Huang, “Experimental analysis of convective boiling heat transfer and nanoparticle deposition effect of TiO2-H2O nanofluids in microchannels,” Therm. Sci. Eng. Prog., vol. 47, no. October 2023, p. 102282, 2024, https://doi.org/10.1016/j.tsep.2023.102282
- [15] R. Lioger-Arago, P. Coste, and N. Caney, “Study of flow boiling in a vertical mini-channel with surface structuring: Heat transfer analysis using inverse method,” Int. J. Therm. Sci., vol. 192, no. PA, p. 108392, 2023, https://doi.org/10.1016/j.ijthermalsci.2023.108392
- [16] A. V. S. Oliveira et al., “Experimental study of the heat transfer of single-jet impingement cooling onto a large heated plate near industrial conditions,” Int. J. Heat Mass Transf., vol. 184, p. 121998, 2022, https://doi.org/10.1016/j.ijheatmasstransfer.2021.121998
- [17] M. Haag, P. K. Selvam, and S. Leyer, “Effect of condenser tube inclination on the flow dynamics and instabilities in a passive containment cooling system (PCCS) for nuclear safety,” Nucl. Eng. Des., vol. 367, no. May, p. 110780, 2020, https://doi.org/10.1016/j.nucengdes.2020.110780
- [18] X. Luo et al., “Experimental investigation on high-temperature flow boiling heat transfer characteristics of R245fa in a horizontal circular tube,” Appl. Therm. Eng., vol. 225, no. February, p. 120260, 2023, https://doi.org/10.1016/j.applthermaleng.2023.120260
- [19] D. Straubinger, B. Illés, D. Busek, N. Codreanu, and A. Géczy, “Modelling of thermocouple geometry variations for improved heat transfer monitoring in smart electronic manufacturing environment,” Case Stud. Therm. Eng., vol. 33, no. March, 2022, https://doi.org/10.1016/j.csite.2022.102001
- [20] J. Wang, B. Yu, C. Qian, J. Shi, and J. Chen, “Experimental study on the boiling heat transfer characteristics of a pump-driven two-phase cooling loop system for high heat flux avionics,” Therm. Sci. Eng. Prog., vol. 45, no. August, p. 102150, 2023, https://doi.org/10.1016/j.tsep.2023.102150
- [21] “Data Sheets of low-boiling working fluids by 3M Company.” https://www.3m.com/
- [22] S. Kumar, N. Singh, and R. Prasad, “Anhydrous ethanol: A renewable source of energy,” Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 1830-1844, 2010, https://doi.org/10.1016/j.rser.2010.03.015
- [23] P. G. Aleiferis and M. K. Behringer, “Flame front analysis of ethanol, butanol, iso-octane and gasoline in a spark-ignition engine using laser tomography and integral length scale measurements,” Combust. Flame, vol. 162, no. 12, pp. 4533-4552, 2015, https://doi.org/10.1016/j.combustflame.2015.09.008
- [24] WIKA Alexander Wiegand SE & Co. KG, WIKA Operating instructions temperature dry well calibrator, model CTD9100-ZERO. 2015.
- [25] EURAMET Calibration Guide No. 8 Guidelines on the Calibration of Thermocouples, Version 3.1, 02/2020.
- [26] “IEC 60584-1:2013 - Thermocouples - Part 1: EMF specifications and tolerances,” 2013.
- [27] “Czaki Thermo-Product, Data Sheet - Temperature sensors: TP-232, type N; TP-220 type K; TP-231 types T and J.” https://www.czaki.pl/en/produkt/temperature-sensor-tp-231_234-sheathed-thermocouple-with-mt-plug/
- [28] “Czaki Thermo-Product Calibration Certificate No. 327/2022, Date of Issue 12.07.2022,” 2022.
- [29] “Measurement Computing. DBK81, DBK82, DBK83, & DBK84 Low-Noise, High-Accuracy, Thermocouple/mV Expansion Specifications & Ordering Information.” https://files.digilent.com/datasheets%2Fdbk81_dbk82_dbk83_dbk84_data.pdf
- [30] “Measurement Computing, User’s Manual DaqLab/2000 Series - DaqLab/2005.” https://support.elmark.com.pl/iotech/desktop/DaqLab_Users_Manual.pdf
- [31] “EN IEC 60584-3:2021-11-Thermocouples - Part 3: Extension and compensating cables - Tolerances and identification system,” 2021.
- [32] “EA-4/02 M:2022 Evaluation of the Uncertainty of Measurement in Calibration,” 2022.
- [33] “IEC 60751:2022-Industrial platinum resistance thermometers and platinum temperature sensors,” 2022.
- [34] “JCGM 100: 2008 Evaluation of measurement data - Guide to the expression of uncertainty in measurement,” Joint Committee for Guides in Metrology (JCGM), 2008.
- [35] JCGM 101:2008 Evaluation of measurement data - Supplement 1 to the “Guide to the expression of uncertainty in measurement” - Propagation of distributions using a Monte Carlo method. Joint Committee for Guides in Metrology (JCGM), 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c53512aa-1968-45b2-9d17-d606073d4308
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.