PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Failure analysis of beam composite elements subjected to three-point bending using advanced numerical damage models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the experimental and numerical analysis of three-point bending phenomenon on beam composite profiles. Flat rectangular test specimens made of carbon–epoxy composite, characterised by symmetric [0/90/0/90]s laminate ply lay-up, were used in this study. Experimental testing was carried out with a COMETECH universal testing machine, using special three-point bending heads. In addition, macroscopic evaluation was performed experimentally using a KEYENCE Digital Microscope with a mobile head recording real-time images. Parallel to the experimental studies, numerical simulations were performed using the finite element method in ABAQUS software. The application of the above-mentioned interdisciplinary research techniques allowed for a thorough analysis of the phenomenon of failure of the composite material subjected to bending. The obtained research results provided a better understanding of the failure mechanism of the composite material.
Rocznik
Strony
133--144
Opis fizyczny
Bibliogr. 78 poz., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Fascetti A, Feo L, Nistic N, Penna R. Web-flange behavior of pultruded GFRP I beams: a lattice model for the interpretation of experimental results. Composites Part B Eng, 2016;100:257-269.
  • 2. Berardi VP, Perrella M, Feo L, Cricrì G. Creep behavior of GFRP laminates and their phases: experimental investigation and analytical modeling. Composites Part B Eng, 2017;122:136-144.
  • 3. Kubiak T, Kolakowski Z, Swiniarski J, Urbaniak M, Gliszczynski A. Local buckling and post-buckling of composite channel-section beams – numerical and experimental investigations. Composites Part B Eng, 2016;91:176-188.
  • 4. Rozylo P. Experimental-numerical study into the stability and failure of compressed thin-walled composite profiles using progressive failure analysis and cohesive zone model. Composite Structures, 2021;257:113303.
  • 5. Debski H, Rozylo P, Teter A. Buckling and limit states of thin-walled composite columns under eccentric load. Thin-Walled Structures, 2020;149:106627.
  • 6. Debski H, Rozylo P, Wysmulski P. Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading. Composite Structures, 2020;252:112716.
  • 7. Rozylo P, Debski H. Stability and load-carrying capacity of short composite Z-profiles under eccentric compression. Thin-Walled Structures, 2020;157:107019.
  • 8. Debski H, Samborski S, Rozylo P, Wysmulski P. Stability and Load-Carrying Capacity of Thin-Walled FRP Composite Z-Profiles under Eccentric Compression. Materials, 2020;13:2956.
  • 9. Rozylo P, Debski H. Effect of eccentric loading on the stability and load-carrying capacity of thin-walled composite profiles with top-hat section. Composite Structures, 2020;245:112388.
  • 10. Gliszczynski A, Czechowski L. Collapse of channel section composite profile subjected to bending, Part I: Numerical investigations. Compos Struct, 2017;178:383–394.
  • 11. Jakubczak P, Gliszczynski A. Bienias J, Majerski K. Kubiak T. Collapse of channel section composite profile subjected to bending Part II: Failure analysis. Compos Struct, 2017;179:1–20.
  • 12. Kazmierczyk F, Urbaniak M, Swiniarski J, Kubiak T. Influence of boundary conditions on the behaviour of composite channel section subjected to pure bending – Experimental study. Compos Struct, 2022;279:114727.
  • 13. Gliszczynski A, Kubiak T. Load-carrying capacity of thin-walled composite beams subjected to pure bending. Thin-Walled Struct, 2017;115:76–85.
  • 14. Czechowski L, Gliszczynski A, Bienias J, Jakubczak P, Majerski K. Composites Part B, 2017;111:112-123.
  • 15. Banat D, Mania RJ. Failure assessment of thin-walled FML profiles during buckling and postbuckling response. Compos Part B Eng 2017;112:278-289.
  • 16. Madukauwa-David ID, Drissi-Habti M. Numerical simulation of the mechanical behavior of a large smart composite platform under static loads. Composites Part B Eng 2016;88:19-25.
  • 17. Feo L, Latour M, Penna R, Rizzano G. Pilot study on the experimental behavior of GFRP-steel slip-critical connections. Composites Part B Eng 2017;115:209-222.
  • 18. Chroscielewski J, Miskiewicz M, Pyrzowski Ł, Sobczyk B, Wilde K. A novel sandwich footbridge - Practical application of laminated composites in bridge design and in situ measurements of static response. Composites Part B Eng 2017;126:153-161.
  • 19. Rozylo P. Stability and failure of compressed thin-walled composite columns using experimental tests and advanced numerical damage models. Int J Numer Methods Eng. 2021;122:5076-5099.
  • 20. Rozylo P, Wysmulski P. Failure analysis of thin-walled composite profiles subjected to axial compression using progressive failure analysis (PFA) and cohesive zone model (CZM). Composite Structures, 2021;262:113597.
  • 21. Rozylo P, Debski H, Wysmulski P, Falkowicz K. Numerical and experimental failure analysis of thin-walled composite columns with a top-hat cross section under axial compression. Composite Structures 2018;204:207-216.
  • 22. Paszkiewicz M, Kubiak T. Selected problems concerning determination of the buckling load of channel section beams and columns. Thin-Walled Structures 2015;93:112-121.
  • 23. Ascione F. Influence of initial geometric imperfections in the lateral buckling problem of thin walled pultruded GFRP I-profiles. Composite Structures 2014;112:85–99.
  • 24. Sohn MS, Hu XZ, Kim JK, Walker L. Impact damage characterisation of carbon fibre/epoxy composites with multi-layer reinforcement. Composites Part B: Engineering 2000;31:681-691.
  • 25. Batra RC, Gopinath G, Zheng JQ. Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates. Composite Structures 2012;94:540-547.
  • 26. Rozylo P, Ferdynus M, Debski H, Samborski S. Progressive Failure Analysis of Thin-Walled Composite Structures Verified Experimentally. Materials, 2020;13:1138.
  • 27. Debski H, Rozylo P, Gliszczynski A, Kubiak T. Numerical models for buckling, postbuckling and failure analysis of predamaged thin-walled composite struts subjected to uniform compression. Thin-Walled Structures, 2019;139:53-65.
  • 28. Reddy JN, Pandey AK. A first-ply failure analysis of composite laminates. Comput Struct, 1987;25:371–393.
  • 29. Kubiak T, Samborski S, Teter A. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Compos Struct, 2015; 133:921-929.
  • 30. Hashin Z, Rotem A. A fatigue failure criterion for fibre reinforced materials. J. Compos. Mater, 1973;7:448–464.
  • 31. Camanho PP, Maimí P, Dávila CG. Prediction of size effects in notched laminates using continuum damage mechanics. Compos. Sci. Technol, 2017;67:2715–2727.
  • 32. Camanho PP, Matthews FL. A progressive damage model for mechanically fastened joints in composite laminates. J. Comp. Mater, 1999;33:2248–2280.
  • 33. Barbero EJ, Cosso FA. Determination of material parameters for discrete damage mechanics analysis of carbon epoxy laminates. Compos. Part B Eng, 2014;56:638–646.
  • 34. Lemaitre J, Plumtree A. Application of damage concepts to predict creep fatigue failures. J. Eng. Mater. Technol, 1979;101:284–292.
  • 35. Ribeiro ML, Vandepitte D, Tita V. Damage model and progressive failure analyses for filament wound composite laminates. Appl. Compos. Mater, 2013;20:975–992.
  • 36. Kachanov LM. Time of the rupture process under creep conditions, Izv. AN SSSR. Otd. Tekh. Nauk, 1958;8:26–31.
  • 37. Matzenmiller A, Lubliner J, Taylor LR. A constitutive model for anisotropic damage in fiber composites. Mech. Mater, 1995;20:125–152.
  • 38. Lapczyk I, Hurtado JA. Progressive damage modeling in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf, 2007;38: 2333–2341.
  • 39. Bisagni C, Di Pietro, G, Fraschini L, Terletti D. Progressive crushing of fiber reinforced composite structural components of a Formula One racing car. Compos. Struct, 2005;68:491–503.
  • 40. Li W, Cai H, Li C, Wang K, Fang L. Progressive failure of laminated composites with a hole under compressive loading based on micro-mechanics. Adv. Compos. Mater, 2014;23:477–490.
  • 41. Benzeggagh ML, Kenane M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus. Composites Science and Technology, 1996;56:439–449.
  • 42. Dugdale DS. Yielding of steel sheets containing slit, Journal of the Mechanics and Physics of Solids, 1960;8(2):100-104.
  • 43. Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962;7:55-129.
  • 44. Turon A, Camanho PP, Costa J, Dávila CG. A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mechanics of Materials, 2006;38(11):1072-1089.
  • 45. Camanho PP, Davila CG, de Moura MF. Numerical simulation of mixed-mode progressive delamination in the composite materials, Journal of Composite Materials, 2003;37(16):1415-1438.
  • 46. Hu H, Niu F, Dou T, Zhang H. Rehabilitation Effect Evaluation of CFRP-Lined Prestressed Concrete Cylinder Pipe under Combined Loads Using Numerical Simulation. Mathematical Problems in Engineering, 2018;2018:3268962.
  • 47. Borg R, Nilsson L, Simonsson K. Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model, Composites Science and Technology, 2004;64:269-278.
  • 48. Zhao L, Gong Y, Zhang J, Chen Y, Fei B. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements, Composite Structures, 2014; 116:509-522.
  • 49. Rozylo P. Failure analysis of thin-walled composite structures using independent advanced damage models. Composite Structures, 2021;262:113598.
  • 50. Li ZM, Qiao P. Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression. Engineering Structures, 2015;85:277–292.
  • 51. Bouhala L, Makradi A, Belouettar S, Younes A, Natarajan S. An XFEM/CZM based inverse method for identification of composite failure parameters. Comput. Struct, 2015;153:91-97.
  • 52. Paneretti E, Fanteria D, Danzi F. Delaminations growth in compression after impact test simulations: Influence of cohesive elements parameters on numerical results. Compos. Struct, 2016;137:140-147.
  • 53. Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng, 1999;46(1):131–50.
  • 54. Moës N, Belytschko T. Extended finite element method for cohesive crack growth. Eng Fracture Mech, 2002;69(7):813–33.
  • 55. Dolbow J, Moës N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng, 2001;190(51-52):6825–46.
  • 56. Melenk J, Babuska I. The partition of unity ˙nite element method: Basic theory and applications. computer methods. Appl. Mech Eng, 1996;39:289–314.
  • 57. Zienkiewicz OC, Taylor RL. Finite Element Method—Solid Mechanics, 5th ed.; Elsevier: Barcelona, Spain, 2000.
  • 58. Parlapalli MR, Soh KC, Shu DW, Ma G. Experimental investigation of delamination buckling of stitched composite laminates. Composites: Part A, 2007;38:2024–2033.
  • 59. Turvey GJ, Zhang Y. A computational and experimental analysis of the buckling, postbuckling and initial failure of pultruded GRP columns. Composite Structures, 2006;84:1527–1537.
  • 60. Bohse J. et al. Damage analysis of Polymer Matrix Composites by Acoustic Emission Testing. DGZfP-Proceedings BB 90-CD:339-348.
  • 61. Riccio A, Saputo S, Sellitto A, Di Caprio F, Di Palma L. A numerical-experimental assessment on a composite fuselage barrel vertical drop test: Induced damage onset and evolution. Composite Structures, 2020;248:112519.
  • 62. Gliszczynski A, Kubiak T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Composite Structures, 2017;169:52-61.
  • 63. Aveiga D, Ribeiro ML. A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials. Mathematical Problems in Engineering, 2018;2018:1861268.
  • 64. Rozylo P, Debski H, Falkowicz K, Wysmulski P, Pasnik J, Kral J. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials, 2021;14(6): 1506.
  • 65. Banat D, Mania RJ, Degenhardt R. Stress state failure analysis of thin-walled GLARE composite members subjected to axial loading in the post-buckling range. Composite Structures, 2022;289:115468.
  • 66. Banat D, Mania RJ. Damage analysis of thin-walled GLARE members under axial compression – Numerical and experiment investigations. Compos. Struct, 2020;241:112102.
  • 67. Debski H. Experimental investigation of post-buckling behavior of composite column with top-hat cross-section. Eksploat. Niezawodn, 2013;15:106–110.
  • 68. Debski H. Badania numeryczne i doświadczalne stateczności i nośności kompozytowych słupów cienkościennych poddanych ściskaniu. Zeszyty naukowe nr 1161, Wydawnictwo Politechniki Łódzkiej, ISSN 0137-4834, Łódź, 2013.
  • 69. Rozylo P. Comparison of Failure for Thin-Walled Composite Columns. Materials, 2022;15:167.
  • 70. Debski H, Rozylo P, Wysmulski P, Falkowicz K, Ferdynus M. Experimental study on the effect of eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles. Composites Part B, 2021;226:109346.
  • 71. Li Z, Cen S, Wu CJ, Shang Y, Li CF. High-performance geometric nonlinear analysis with the unsymmetric 4-node, 8-DOF plane element US-ATFQ4. Int J Numer Methods Eng, 2018;114:931–954.
  • 72. Camanho PP, Davila CG. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002–211737, 2002:1–37.
  • 73. Dassault Systemes Simulia Corp. Abaqus 2020 Documentation. Providence, RI, USA, 2020.
  • 74. Belytschko T, Black T. Elastic Crack Growth in Finite Elements with Minimal Remeshing. International Journal for Numerical Methods in Engineering, 1999;45:601–620.
  • 75. Melenk J, Babuska I. The Partition of Unity Finite Element Method: Basic Theory and Applications. Computer Methods in Applied Mechanics and Engineering, 1996;39:289–314.
  • 76. Yu Z, Zhang J, Shen J, Chen H. Simulation of crack propagation behavior of nuclear graphite by using XFEM, VCCT and CZM methods. Nuclear Materials and Energy, 2021;29:101063.
  • 77. Heidari-Rarani M, Sayedain M. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches. Composites Part C: Open Access, 2020;2:100014.
  • 78. Kolanu NR, Raju G, Ramji M. A unified numerical approach for the simulation of intra and inter laminar damage evolution in stiffened CFRP panels under compression. Composites Part B, 2020;190: 107931.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c531e592-0ef2-4d6a-92b7-4f1efd94f6ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.