PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiocarbon dating of organic-rich deposits: Difficulties of paleogeographical interpretations in highlands of Russian Altai

Identyfikatory
Warianty tytułu
Konferencja
Chronostratigraphy of Late Glacial aeolian activity in SW Poland – A case study from the Niemodlin Plateau
Języki publikacji
EN
Abstrakty
EN
The high mountainous southeastern part of Russian Altai is characterized by complicated sedimentation history. As a result of tectonic movements, Paleogene, Neogene, and even more old Carboniferous and Jurassic organicrich deposits had been partly uplifted and exhumed on the ridge’s slopes, where during the Pleistocene, they were affected by various exogenous processes including glaciation, glacio-fluvial erosion, winnowing activity of ice-dammed lakes, sliding during lake-draining events, followed by further intensive Holocene erosion, pedogenesis, and permafrost formation/degradation. Remobilized ancient organic matter had been involved into geomorphic and pedogenesis processes and affected the results of radiocarbon dating. Numerous radiocarbon ages obtained revealed several typical problems in interpretation of dating results, which was confirmed by multidisciplinary investigations of associated sediments in a wider regional context. This article presents a discussion on obtained apparent radiocarbon dates of organic material from ten sections of the SE Altai. In addition to radiocarbon analysis, in each case multidisciplinary study was carried out in order to properly interpret obtained dates, as well as to explain the inability of directly using apparent 14C ages as a geochronological basis for paleogeographical reconstruction. The analysis presented is of vital importance for establishing the chronology of formation of large ice-dammed lakes and their cataclysmic draining; revealing chronology and paleoenvironmental conditions of pedogenesis in the highlands of the SE Altai; and estimating the range and magnitude of the tectonically driven topography rebuilding in the post-Neogene time.
Wydawca
Czasopismo
Rocznik
Strony
138--153
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
  • Institute of Geology and Mineralogy SB RAS, Koptyuga av., 3, 630090 Novosibirsk, Russia
  • Ural Federal University, Mira str., 19, 620002 Yekaterinburg, Russia
autor
  • Institute of Geology and Mineralogy SB RAS, Koptyuga av., 3, 630090 Novosibirsk, Russia
  • Ural Federal University, Mira str., 19, 620002 Yekaterinburg, Russia
  • Institute of Geography RAS, Staromonetny str., 29, 119017 Moscow, Russia
  • Institute of Geography RAS, Staromonetny str., 29, 119017 Moscow, Russia
  • Institute of Geology and Mineralogy SB RAS, Koptyuga av., 3, 630090 Novosibirsk, Russia
autor
  • Institute of Physics, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • 1. Agatova AR, Nepop RK, Bronnikova MA, Slyusarenko IYu and Orlova LA, 2016. Human occupation of South Eastern Altai highlands (Russia) in the context of environmental changes. Archaeological and Anthropological Sciences 8: 419-440, DOI: 10.1007/s12520-014-0202-7.
  • 2. Agatova AR, Nepop RK, Rudaya NA, Khazina IV, Zhdanova AN, Bronnikova MA, Uspenskaya ON, Zazovskaya EP, Ovchinnikov IY, Panov VS and Shurygin BN, 2017. Discovery of Upper Oligocene–Lower Miocene brown coal deposits (Kosh-Agach formation) in the Dzhazator River valley (Southeastern Russian Altai): Neotectonic and paleogeographical aspects. Doklady Earth Sciences 475(2): 854-857, DOI: 10.1134/ S1028334X17080104.
  • 3. Agatova AR and Nepop RK, 2017. Pleistocene glaciations of the SE Altai, Russia, based on geomorphological data and absolute dating of glacial deposits in hagan reference section. Geochronometria 44: 49-65, DOI: 10.1515/geochr-2015-0059.
  • 4. Agatova AR, Nepop RK, Zazovskaya EP, Ovchinnikov IYu and Moska P, 2019. Problems of developing the Pleistocene radiocarbon chronology within high mountain terrains by the example of Russian Altai. Radiocarbon 61(6): 2019-2028, DOI: 10.1017/RDC.2019.83.
  • 5. Agatova AR, Nepop RK, Carling PA, Bohorquez P, Khazin LB, Zhdanova AN and Moska P, 2020. Last ice-dammed lake in the Kuray basin, Russian Altai: New results from multidisciplinary research. Earth-Science Reviews, DOI: 10.1016/j.earscirev.2020.103183.
  • 6. Arslanov AA, 1987. Radiocarbon: Geochemistry and Geochronology. Leningrad: Leningrad State University Press (in Russian).
  • 7. Beug HJ, 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. München. Bronk Ramsey C, 2017. Methods for Summarizing Radiocarbon Datasets. Radiocarbon 59(2): 1809-1833, DOI: 10.1017/ RDC.2017.108.
  • 8. Bronnikova MA, Agatova AR, Lebedeva MP, Nepop RK, Konoplianikova YuV and Turova IV, 2018. Record of Holocene Changes in High-Mountain Landscapes of Southeastern Altai in the Soil-Sediment Sequence of the Boguty River Valley. Eurasian Soil Science 51(12): 1381-1396, DOI: 10.1134/ S1064229318120037.
  • 9. Buslov MM, Zykin VS, Novikov IS and Delvo D, 1999. Structural and geodynamic features of Cenozoic formation of Chuya intermountain depressions, Gorny Altai. Russian Geology and Geophysics 40(12): 1720-1736, DOI: 10.1016/j.rgg.2011.12.007.
  • 10. Butvilovsky VV, 1993. Paleogeography of the Last Glaciation and the Holocene of Altai: A Catastrophic Events Model. Tomsk, Tomsk University Press (in Russian).
  • 11. Deev, EV, Nevedrova, NN, Zol’Nikov, ID, Rusanov, GG, and Ponomarev, PV, 2012. Geoelectrical studies of the Chuya basin sedimentary fill (Gorny Altai). Russian Geology and Geophysics 53(1): 92-107, DOI: 10.1016/j.rgg.2011.12.007.
  • 12. Devyatkin, EV, 1965. Cenozoic deposits and neotectonics of Southeastern Altai. Moscow, USSR Academy of Science (In Russian).
  • 13. Dobretsov, NL, Buslov, MM, Delvaux, D, Berzin, NA, and Ermikov, VD, 1996. Meso- and Cenozoic tectonics of the Central Asian mountain belt: effects of lithospheric plate interaction and mantle plumes. International Geology Review 38(5): 430- 466, DOI: 10.1080/00206819709465345.
  • 14. Galbraith, RF, Roberts, RG, Laslett, GM, Yoshida, H, and Olley, JM, 1999. Optical dating of single and multiple grains of quartz from Jinminum Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 41: 1835-1857.
  • 15. Glorie, S, De Grave, J, Buslov, MM, Zhimulev, FI, Izmer, A, Vandoorne, W, Ryabinin, A. Van den haute, P, Vanhaecke, F, and Elburg, MA, 2011. Formation and Palaeozoic evolution of the Gorny-Altai–Altai-Mongolia suture zone (South Siberia): Zircon U/Pb constraints on the igneous record. Gondwana Research 20(2-3): 465-484, DOI: 10.1016/j. gr.2011.03.003.
  • 16. Glorie, S, De Grave, J, Buslov, MM, Zhimulev, FI, and Elburg, MA, 2012. Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multimethod thermochronometry. Tectonophysics 544: 75-92, DOI: 10.1016/j.tecto.2012.03.035.
  • 17. Gribenski, N, Jansson, KN, Lukas, S, Stroeven, AP, Harbor, JM, Blomdin, R, Ivanov, MN, Heyman, J, Petrakov, DA, Rudoy, A, Clifton, T, Lifton, NA, and Caffee, MW, 2016. Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai. Quaternary Science Reviews 149: 288- 305, DOI: 10.1016/j.quascirev.2016.07.032.
  • 18. Guerin, G., Mercier, N, and Adamiec, G, 2011. Dose-rate conversion factors: update. Ancient TL 29: 5-8.
  • 19. Herget, J, 2005. Reconstruction of Pleistocene Ice-dammed Lake Outburst Floods in Altai-mountains, Siberia. Geological Society of America, Special Publication 386: 118pp.
  • 20. Herget, J, Agatova, AR, Carling, P, and Nepop, RK, 2020. Altai megafloods - the temporal context. Earth Science Reviews 200, 102995, DOI: 10.1016/j.earscirev.2019.102995.
  • 21. Jankovska, V, and Komarek, J, 2000. Indicative value of Pediastrum and other Coccal Green algae in palaeoecology. Folia Geobotanica 35: 59-82, DOI: 10.1007/BF02803087.
  • 22. Kuprianova, LA, and Alyoshina, LA, 1972. Spore and pollen of plants in European part of the USSR. Leningrad, Nauka (in Russian).
  • 23. Luzgin, B.N, and Rusanov, GG, 1992. Characteristics of formation of Neogenic deposits in the Southeastern Gorny Altai. Russian Geology and Geophysics 33(4): 18-23.
  • 24. Murray, AS, and Wintle, AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation measurements 32(1): 57-73, DOI: 10.1016/ S1350-4487(99)00253-X.
  • 25. Narozhny, YuK, Osipov, AV, 1999. Oroclimatic conditions of the Central Altai glaciations. News of Russian Geographical Society 131(3): 49-57 (in Russian).
  • 26. Nekhoroshev, VP, 1966. Tectonics of Altai. Moscow: Nedra (in Russian).
  • 27. Nevedrova, NN, Epov, MI, Antonov, EY, Dashevsky, YA, and Duchkov, AD, 2001. Deep structure of the Chuya basin (Gorny Altai), as imaged by TEM soundings. Russian Geology and Geophysics 42(9): 1399-1416.
  • 28. Novikov, IS, 2004. Morfotektonika Altaja (Morphotectonics of the Altai Mountains). Novosibirsk, SO RAN Publisher, “Geo” Brunch: 313pp (in Russian).
  • 29. Okishev, PA, and Borodavko, PS, 2001. New materials on the history of the Chuya-Kurai limnosystem. Issues of Geography of Siberia 24: 18-27 (in Russian).
  • 30. Ostanin, OV, 2007. Modern evolution of high mountain systems (by the example of Central and Southeastern Altai). PhD thesis. Barnaul Altai State University, 195pp (in Russian).
  • 31. Permafrost-hydrogeological Map, scale 1:200000, 1977. Novosibirsk, Department of Funds Western Siberian Geological administration, 18195.
  • 32. Prescott, JR, and Stephan, LG, 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependencies. TLS II-1: 16-25.
  • 33. Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, J.R., Turney, CSM, and Van der Plicht, J, 2013. IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years cal BP. Radiocarbon 55(4): 1869-1887, DOI: 10.2458/azu_js_rc.55.16947.
  • 34. Rogozhin, EA, Ovsyuchenko, AN, and Marahanov, AV, 2008. Major earthquakes of the southern Gorny Altai in the Holocene. Izvestiya. Physics Solid Earth 44(6): 469–486, DOI: 10.1134%2FS1069351308060037.
  • 35. Rudoy, AN, 2002. Glacier-Dammed Lakes and geological work of glacial superfloods in the Late Pleistocene, Southern Siberia, Altai Mountains. Quaternary International 87(1): 119-140, DOI: 10.1016/S1040-6182(01)00066-0. Rudoy, AN, 2005. Giant Current Ripples. Tomsk, Tomsk State University (in Russian).
  • 36. Rusanov, GG, Deev, EV, Zolnikov, ID, Khazin, LB, Khazina, IV, and Kuz’mina, O.B, 2017. Reference section of Neogene-Quarternary deposits in the Uimon Basin (Gorny Altai). Russian Geology and Geophysics 58(8): 973-983, DOI: 10.1016/j.rgg.2017.07.008.
  • 37. Selin, PF, Goverdovsky, VA, 2000. Coal deposits of the Altai Republic. The results and prospects of the geological study of the Altai Mountains. Gorno-Altaisk, Gorno-Altaisk Publishing House (in Russian).
  • 38. Shokalsky, SP, Zybin, VA, and Sergeev, VP, 1999. Legend of the Altai series of the State Geological Map of the Russian Federation - 1: 200000. Explanatory note. Novokuznetsk, OF FUGUP (in Russian).
  • 39. Shumilovskikh LS, Schlütz F, Achterberg I, Bauerochse A, and Leuschner HH, 2015. Nonpollen palynomorphs from mid-Holocene peat of the raised bog Borsteler Moor (Lower Saxony, Germany). Studia Quaternaria 32(1): 5-18, DOI: 10.1515/squa-2015-0001.
  • 40. Skripkin, V, and Kovaliukh, N, 1997. Recent Developments in the Procedures Used at the SSCER Laboratory for the Routine Preparation of Lithium Carbide. Radiocarbon 40(1): 211-214, DOI: 10.1017/S0033822200018063.
  • 41. Skrypnikova, M, Uspenskaya, O, and Khokhlova, O, 2011. Paleoclimate Study of Mountain Ecosystems by Multiple Group Biological Analysis. Journal of Mountain Science 8: 24-36, DOI: 10.1007/s11629-011-1033-y.
  • 42. Solotchina, EP, 2009. Structural Typomorphism of Clay Minerals of Sedimentary Sections and Crusts of Weathering. Novosibirsk, Geo (in Russian).
  • 43. Svitoch, AA, Boyarskaya, TD, Voskresenskaya, TN, Glushakova, II, Evseev, AV, Kursalova, VI, Parmonova, NN, Faustov, SS, and Khorev, VS, 1978. The sections of the latest deposits of Altai. Moscow, MSU Publisher (in Russian).
  • 44. Uspenskaya, ON, 1986. Other algae In: Treshnikov AF, Kvasov VA, Rumjancev VA ed. General patterns of formation and development of lakes. Methods of studying the history of lakes. Leningrad, Nauka: 146-151 (in Russian).
  • 45. Wallinga, J. 2002. On the detection of OSL age overestimation using single-aliquot techniques. Geochronometria V21: 17-26.
  • 46. Vysotsky, EM, 2009. The age of relief forming of weelhead part of Kurai depression (Gorny Altai). In: Proceedings of the VI All-Russian Quaternary conference “Fundamental Problems of Quaternary: Results and Trends of Future Researches”, Novosibirsk, SB RAS Publisher: 137-138 (in Russian).
  • 47. Zolnikov, ID, 2011. Role of glaciations and glacial megafloods in geological structure of the Neopleistocene sedimentary complexes in Gorny Altai and Altai foreplain. Doctoral Thesis. Novosibirsk: OIT IPGG SB RAS, 35p. (in Russian).
  • 48. Zolnikov, ID, Mistrukov, AA, 2008. Quaternary deposits and relief of the Chuya and Katun valleys. Novosibirsk, Parallel (in Russian).
  • 49. Zolnikov, ID, Deev, EV, Kotler, SA, Rusanov, GG, Nazarov, DV, 2016. New results of OSL dating of Quaternary sediments in the Upper Katun’valley (Gorny Altai) and adjacent area. Russian Geology and Geophysics 57(6): 933-943, DOI: 10.1016/j.rgg.2015.09.022.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c530bcfd-1378-4d2b-8b1f-df187fc8a99a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.