PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parallel Scott-Blair fractional model of viscoelastic biological materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and also complex orders. Therefore, it adds a new means to understand and describe the nature and behavior of complex dynamical systems. Here we use the fractional calculus for modeling mechanical viscoelastic properties of materials. In the present work, after reviewing some of the main viscoelastic fractional models, a new parallel model is employed, connecting in parallel two Scott-Blair models with additional multiplicative weight functions. The model is presented in terms of two power functions weighted by Debye-type functions extend representation, understanding and description of complex systems viscoelastic properties. Monotonicity of the model relaxation modulus is studied and some upper bounds for the minimal time value, above which the model relaxation modulus is monotonically decreasing are given and compared both analytically and numerically. The comparison with the results of relaxation tests executed on some real phenomena has shown that the parallel Scott-Blair model involving fractional derivatives has been in a good agreement.
Twórcy
  • Department of Technology Fundamentals, University of Life Sciences in Lublin, Poland
Bibliografia
  • 1. Alzer H. 1993. Some gamma function inequalities. Math. Comp. Vol. 60, 337-346.
  • 2. Bohdziewicz J. 2007. Modelowanie przebiegu odkształceń tkanek parenchymy warzyw w warunkach quasi-statycznych zmian obciążeń. Wyd. Uniwersytetu Przyrodniczego, Wrocław.
  • 3. Bohdziewicz J., Czachor G. 2016. The rheological properties of redcurrant and highbush blueberry berries. Agricultural Engineering, Vol. 20, No. 2, 15-22.
  • 4. Cai W., Chen W., Xu W. 2016. Characterizing the creep of viscoelastic materials by fractal derivative Models. International Journal of Non-Linear Mechanics, Vol. 87, 58-63.
  • 5. Christensen R. M. 2013. Theory of Viscoelasticity. Dover Publications, Mineola, New York.
  • 6. Debnath L. 2003. Recent applications of fractional calculus to science and engineering. International Journal of Mathematics and Mathematical Sciences, Vol. 54, 3413-3442.
  • 7. Freeborn T. J. 2013. A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerging Select. Topics Circuits Syst. Vol. 3, 416-424.
  • 8. Gorenflo R., Kilbas A. A., Mainardi F., Rogosin, S. V. 2014. Mittag-Leffler Functions, Related Topics and Applications. Theory and Applications. Springer, Heidelberg, New York, London.
  • 9. Hernández-Jiménez A., Hernández-Santiago J., Macias-García A., Sánchez-González J., 2002. Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polymer Testing, Vol. 21, 325–331.
  • 10. Heymans N., Bauwens J. C. 1994. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta, Vol. 33, 210-219.
  • 11. Hilfer R. 2000. Applications of Fractional Calculus in Physics. World Scientific, Singapore, London, Hong Kong.
  • 12. Kaczorek T., Rogowski K. 2014. Fractional Linear Systems and Electrical Circuits. Printing House of Bialystok University of Technology, Białystok.
  • 13. Machado J., Tenreiro V. K., Mainardi F. 2011. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. Vol. 16, No. 3, 1140–1153.
  • 14. Mainardi F., Spada G. 2011. Creep, relaxation and viscosity properties for basic fractional models in rheology. The European Physical Journal Special Topics. Vol. 193, No. 1, 133-160.
  • 15. Moreles M. A., Lainez R. 2017. Mathematical model ling of fractional order circuit elements and bioimpedance applications. Commun. Nonlinear Sci. Numer. Simulat., Vol. 46, 81-88.
  • 16. Ortigueira M. D. 2008. An introduction to the fractional continuous-time linear systems, the 21st century systems. IEEE Circuits and Systems Magazine, Vol. 8, No. 3, 19-26.
  • 17. Podlubny I. 1999. Fractional Differential Equations. Academic Press, London.
  • 18. Rao M. A. 2014. Rheology of Fluid, Semisolid, and Solid Foods. Principles and Applications. Springer Science & Business Media, New York.
  • 19. Schiessel H., Blumen A. 1993. Hierarchical analogu es to fractional relaxation equations. J. Phys. A: Math. Gen. Vol. 26, 5057-5069.
  • 20. Schiessel H., Metzler R, Blumen A., Nonnejunacher T. F. 1995. Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A: Math. Gen. Vol. 28, 6567-6584.
  • 21. Scott Blair G. W. 1972. Rheology of foodstuffs, lecture to the technical university in Budapest. Periodica Polytechnica Chemical Engineering, Vol. 16, No. 1, 81-84.
  • 22. Semakov A. V., Kulichikhin V. G., Malkin A. Y. 2015. Self-Organization of Polymeric Fluids in Strong Stress Fields. Advances in Condensed Matter Physics, vol. 2015, Article ID 172862, 17 pages, doi:10.1155/2015/172862.
  • 23. Shapovalov Yu., Mandziy B., Bachyk D. 2013. Optimization of linear parametric circuits in the frequency domain. Econtechmod, Vol. 2, No. 4, 73-77.
  • 24. Stankiewicz A. 2007. Identification of the relaxation spectrum of viscoelastic plant materials. PhD Thesis, Agriculture University of Lublin, Lublin.
  • 25. Stankiewicz A. 2013. Selected methods and algorithms for the identification of models used in the rheology of biological materials. Tow. Wyd. Nauk. Libropolis, Lublin.
  • 26. Stankiewicz A. 2018. Fractional Maxwell model ofviscoelastic biological materials. Proc. Contemporary Research Trends in Agricultural Engineering, BIO Web Conf. Vol. 10, 2018, Article No. 02032, Pages: 8, DOI: https://doi.org/10.1051/bioconf/20181002032.
  • 27. Wagner C. E., Barbati A. C., Engmann J., Burbidge A. S., McKinley G. H. 2017. Quantifying the consistency and rheology of liquid foods using fractional calculus. Food Hydrocolloids Vol. 69, 242-254.
  • 28. Yang F., Ke-Qin Zhu, 2011. A note on the definition of fractional derivatives applied in rheology. Acta Mech. Sin. Vol. 27, No. 6, 866–876.
  • 29. Zhao J., Zheng L., Chen X., Zhang X., Liu F. 2017. Unsteady Marangoni convection heat transfer of fractional Maxwell fluid with Cattaneo heat flux. Applied Mathematical Modelling, Vol. 44, 497–507
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c52ff943-421a-40c5-9ec7-e70478125d07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.