PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of Printed Fabric Pattern Segmentation Analysis and Application

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Image processing of digital images is one of the essential categories of image transformation in the theory and practice of digital pattern analysis and computer vision. Automated pattern recognition systems are much needed in the textile industry more importantly when the quality control of products is a significant problem. The printed fabric pattern segmentation procedure is carried out since human interaction proves to be unsatisfactory and costly. Hence, to reduce the cost and wastage of time, automatic segmentation and pattern recognition are required. Several robust and efficient segmentation algorithms are established for pattern recognition. In this paper, different automated methods are presented to segregate printed patterns from textiles fabric. This has become necessary because quality product devoid of any disturbances is the ultimate aim of the textile printing industry.
Rocznik
Strony
530--538
Opis fizyczny
Bibliogr. 79 poz.
Twórcy
  • Key Laboratory of Eco-textiles, Ministry of Education, School of Textile & Clothing, Jiangnan University, Wuxi, 214122, China
  • Engineering Research Centre of Knitting Technology, Ministry of Education, Jiangnan University, PRC
autor
  • Key Laboratory of Eco-textiles, Ministry of Education, School of Textile & Clothing, Jiangnan University, Wuxi, 214122, China
Bibliografia
  • [1] Gonzalez, R. C., Woods, R. E. (1992). Digital image processing. Addison-Wesley (Reading).
  • [2] Lo, W. Y., Puchalski, S. M. (2008). Digital image processing.Veterinary Radiology & Ultrasound, 49, S42-S47.
  • [3] Rafsanjani, M. K., Varzaneh, Z. A., Chukanlo, N. E. (2012). A survey of hierarchical clustering algorithms. The Journal of Mathematics and Computer Science, 5(3), 229-240.
  • [4] Burney, S. A., Tariq, H. (2014). K-means cluster analysis for image segmentation. International Journal of Computer Applications, 96(4), 1-8.
  • [5] Chabrier, S., Rosenberger, C., Emile, B., Laurent, H. (2008). Optimization-based image segmentation by genetic algorithms. Journal on Image and Video Processing, 2008, 10.
  • [6] Chung, F.-L., Fu, T. C., Ng, V., Luk, R. W. P. (2004). An evolutionary approach to pattern-based time series segmentation. IEEE Transactions on Evolutionary Computation, 8(5), 471-489.
  • [7] Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X. (2002). Yet another survey on image segmentation: region and boundary information integration. Computer Vision—ECCV 2002, 2002, 21-25.
  • [8] Kang, W.-X., Yang, Q.-Q., Liang, R.-P. (2009). The comparative research on image segmentation algorithms. In Education Technology and Computer Science, 2009. ETCS’09. First International Workshop on. 2009. IEEE.
  • [9] Jeon, B. S., Bae, J. H., Suh, M. W. (2003). Automatic recognition of woven fabric patterns by an artificial neural network. Textile Research Journal, 73(7), 645-650.
  • [10] Zaitoun, N. M., Aqel, M. J. (2015). Survey on image segmentation techniques. Procedia Computer Science, 65, 797-806.
  • [11] Gionis, A., Terzi, E. (2007). Segmentations with rearrangements. In Proceedings of the 2007 SIAM International Conference on Data Mining, SIAM.
  • [12] Xing, Y., Ou, Y., Englander, S., Schnall, M., Shen, D. (2007). Simultaneous estimation and segmentation of T1 map for breast parenchyma measurement. In Biomedical Imaging: from Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on, IEEE.
  • [13] Kuo, C.-F.J., Su, T.-L., Huang, Y.-J. (2007). Computerized color separation system for printed fabrics by using backward-propagation neural network. Fibers and Polymers, 8(5), 529-536.
  • [14] Hann, M. (2003). Conceptual developments in the analysis of patterns part two: the application of the principles of symmetry.
  • [15] Hann, M. (2003). Conceptual developments in the analysis of patterns part one: the identification of fundamental geometrical elements.
  • [16] Bezdek, J. C. (1981). Objective function clustering, in Pattern recognition with fuzzy objective function algorithms. Springer, 43-93.
  • [17] Bezdek, J. C., Hall, L., Clarke, L. P. (1993). Review of MR image segmentation techniques using pattern recognition. Medical Physics, 20(4), 1033-1048.
  • [18] Kuo, C.-F. J., Shih, C.-Y., Kao, C.-Y., Lee, J.-Y. (2005). Color and pattern analysis of printed fabric by an unsupervised clustering method. Textile Research Journal, 75(1), 9-12.
  • [19] Mo, H., Xu, B., Ouyang, W., Wang, J. (2017). Color segmentation of multi-colored fabrics using self-organizing-map based clustering algorithm. Textile Research Journal, 87(3), 369-380.
  • [20] Awad, M. (2010). Segmentation of satellite images using Self-Organizing Maps, in Self-Organizing Maps. InTech.
  • [21] El-Melegy, M., et al. (2007). On cluster validity indexes in fuzzy and hard clustering algorithms for image segmentation. In Image Processing, 2007. ICIP 2007. IEEE International Conference on. IEEE.
  • [22] Kuo, C.-F.J., Shih, C.-Y., Lee, J.-Y. (2005). Repeat pattern segmentation of printed fabrics by Hough transform method. Textile Research Journal, 75(11), 779-783.
  • [23] Kuo, C.-F.J., Shih, C.-Y., Lee, J.-Y. (2008). Separating color and identifying repeat pattern through the automatic computerized analysis system for printed fabrics. Journal of Information Science & Engineering, 24(2), 453-467.
  • [24] Kuo, C.-F.J., Shih, C.-Y. (2011). Printed fabric computerized automatic color separating system. Textile Research Journal, 81(7), 706-713.
  • [25] Lucieer, V., Lucieer, A. (2009). Fuzzy clustering for seafloor classification. Marine Geology, 264(3-4), 230-241.
  • [26] Fujiwara, H., Zhang, Z., Hatta, H., Koshimizu, H. (2004). Visual inspection of textile surfaces with translation invariant wavelet shrinkage. In Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE, IEEE.
  • [27] Firdaus, S., Uddin, M. A. (2015). A survey on clustering algorithms and complexity analysis. International Journal of Computer Science Issues (IJCSI), 12(2), 62.
  • [28] Willis, K. D., Xu, C., Wu, K. J., Levin, G., Gross, M. D. (2011). Interactive fabrication: new interfaces for digital fabrication. In Proceedings of the fifth international conference on Tangible, Embedded, and Embodied Interaction, ACM.
  • [29] Clarke, S. E. B., Harris, J. (2012). Digital visions for fashion and textiles: Made in code. Thames and Hudson Ltd.
  • [30] Yu, H., Winkler, S. (2013). Image complexity and spatial information. In Quality of Multimedia Experience (QoMEX), 2013 Fifth International Workshop on, IEEE.
  • [31] Guruprasad, R., Behera, B. (2010). Soft computing in textiles.
  • [32] Tan, P.-N., Steinbach, M., Kumar, V. (2013). Data mining cluster analysis: basic concepts and algorithms. Introduction to Data Mining.
  • [33] Baratis, E., Petrakis, E. G., Milios, E. E. (2008). Automatic website summarization by image content: a case study with logo and trademark images. IEEE Transactions on Knowledge & Data Engineering, 9, 1195-1204.
  • [34] Jia, W., McKenna, S. J., Ward, A. A. (2009). Extracting printed designs and woven patterns from textile images. In VISAPP, 1, Citeseer.
  • [35] Milanović, M., Stamenković, M. (2010). Data mining and segmentation of time series for knowledge discovery. In Proceedings of the International Scientific Conference – The Challenges of Economic Science and Practice in the 21st Century.
  • [36] Everingham, M., Muller, H., Thomas, B. (2002). Evaluating image segmentation algorithms using the Pareto front. In European Conference on Computer Vision. Springer.
  • [37] Gionis, A., Mannila, H. (2005). Segmentation algorithms for time series and sequence data. In Tutorial at 5th SIAM International Conference on Data Mining.
  • [38] Kopenkov, V. (2016). Development of computational procedure of local image processing, based on the usage of hierarchical regression.
  • [39] Drobina, R., Machnio, M. S. (2006). Application of the image analysis technique for textile identification. Autex Research Journal, 6(1), 40-48.
  • [40] Jeyakumar, M. (2012). Time complexity analysis of binary space partitioning scheme for image compression. arXiv preprint arXiv:1211.2037.
  • [41] Kugiumtzis, D., Tsimpiris, A. (2010). Measures of analysis of time series (MATS): a MATLAB toolkit for computation of multiple measures on time series data bases. arXiv preprint arXiv:1002.1940.
  • [42] Carreira-Perpinan, M. A. (2001). Continuous latent variable models for dimensionality reduction and sequential data reconstruction. University of Sheffield (UK).
  • [43] Raj, D., Singal, P. (2017). Reducing the computational complexity of A 2d Gaussian filter for image processing (an overview). International Journal of Advance Research, Ideas and Innovations in Technology, 3(3), 514-517.
  • [44] Bingham, E., Gionis, A., Haiminen, N., Hiisilä, H., Mannila, H., et al. (2006). Segmentation and dimensionality reduction. In Proceedings of the 2006 SIAM International Conference on Data Mining. SIAM (Bethesda).
  • [45] Hand, D. J. (2007). Principles of data mining. Drug Safety, 30(7), 621-622.
  • [46] Bieniecki, W., Grabowski, S. (2004). Nearest neighbor classifiers for color image segmentation. In Modern Problems of Radio Engineering, Telecommunications and Computer Science, 2004. Proceedings of the International Conference, IEEE.
  • [47] Ueno, K., Xi, X., Keogh, E. J., Dah-Jye, L (2006). Anytime classification using the nearest neighbor algorithm with applications to stream mining. In null, IEEE.
  • [48] Acharjya, P. P., Ghoshal, D. (2012). A new image segmentation algorithm for grid computing. International Journal of Scientific and Research Publications, 2(10).
  • [49] Raj, D., Singal, P. (2017). The computation complexity reduction of 2-D Gaussian filter. International Research Journal of Engineering and Technology, 4(6).
  • [50] Vidyarthi, A., Kansal, A. (2012). A survey report on digital images segmentation algorithms. International Journal of Computer Engineering &Technology (IJCET), 3(2), 85-91.
  • [51] Araujo, A. (2010). Repetition, pattern, and the domestic: notes on the relationship between pattern and home-making. Textile, 8(2), 180-201.
  • [52] López-Rodríguez, P., Fernández-Recio, R., Bravo, I., Gardel, A., Lázaro, J. L., et al. (2013). Computational burden resulting from image recognition of high resolution radar sensors. Sensors, 13(4), 5381-5402.
  • [53] Ngan, H. Y., Pang, G. K., Yung, N. H. (2011). Automated fabric defect detection – a review. Image and Vision Computing, 29(7), 442-458.
  • [54] Kumah, C., Zhang, N., Raji, R.K. and Pan, R. (2019) Color Measurement of Segmented Printed Fabric Patterns in Lab Color Space from RGB Digital Images. Journal of Textile Science and Technology, 5, 1-18. https://doi.org/10.4236/jtst.2019.51001
  • [55] Aly, A. A., Deris, S. B., Zaki, N. (2011). Research review for digital image segmentation techniques. International Journal of Computer Science & Information Technology, 3(5), 99.
  • [56] Murtagh, F. (2002). Clustering in massive data sets. In Abello, J., Pardalos, P. M., Resende, M. G. C. (eds), Handbook of massive data sets. Springer (Boston, MA), 501-543.
  • [57] Hirano, Y., Garcia, C., Sukthankar, R., Hoogs, A. (2006). Industry and object recognition: Applications, applied research and challenges. In Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.), Toward Category-Level Object Recognition, Springer (Berlin, Heidelberg), 49-64.
  • [58] Strzecha, K., Fabijańska, A., Sankowski, D. (2006). Segmentation algorithms for industrial image quantitative analysis systems. In XVIII IMEKO World Congress Metrology for a Sustainable Development.
  • [59] Hewage, R., Sonnadara, D. (2011). Colour image segmentation technique for screen printing. Proceedings of the Technical Sessions, 27, 60-67.
  • [60] Rajarajan, J., Kalivarathan, D. G. (2012). Influence of local segmentation in the context of digital image processing–a feasibility study. International Journal of Computer Engineering & Technology (IJCET), 3(3), 340-347.
  • [61] Zhang, Y., Lu, Z., Li, J. (2010). Fabric defect classification using radial basis function network. Pattern Recognition Letters, 31(13), 2033-2042.
  • [62] PVPIT, B. Fabric Defect Detection with Thresholding and Morphological based Segmentation Methods and Classification Using Neural Network.
  • [63] Boydell, C., Schoeser, M. (2008). Disentangling textiles: techniques for the study of designed objects (with authored chapter Textiles in the modern home pp 81-94). Middlesex University Press.
  • [64] Kristensen Johnstone, T. (2014). The impact of scale on a block-repeated surface pattern in spatial contexts.
  • [65] Dobrea, D. M., Blaga, M. (2007). Genetic algorithm for textile pattern recognition. in 1st Aachen–Dresden International Textile Conference.
  • [66] Chen, S., Zhang, D. (2004). Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(4), 1907-1916.
  • [67] Perez, R., Silvestre, J., Munoz, J. (2004). Defect detection in repetitive fabric patterns. Proceeding of Visualization, Imaging and Image Processing, September, 6-8.
  • [68] Lu, X. (2011). Multiscale Segmentation Techniques for Textile Images. In Image Segmentation. 2011, InTech.
  • [69] Cheng, H., Bouman, C. A. (2001). Multiscale Bayesian segmentation using a trainable context model. IEEE Transactions on Image Processing, 10(4), 511-525.
  • [70] Choi, H., Baraniuk, R. G. (2001). Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Transactions on Image Processing, 10(9), 1309-1321.
  • [71] Fan, G., Xia, X.-G. (2000). Maximum likelihood texture analysis and classification using wavelet-domain hidden Markov models. IN ASILOMAR Conference on Signals Systems and Computers. Citeseer.
  • [72] Li, P., et al. (2015). The real-time vision system for fabric defect detection with combined approach. In International Conference on Image and Graphics. Springer.
  • [73] Erhardt-Ferron, A. (2000). Theory and applications of digital image processing. University of Applied Sciences Offenburg, 1(2), 3.
  • [74] Gupta, G. (2014). Introduction to data mining with case studies. PHI Learning Pvt. Ltd (Delhi).
  • [75] Kraft, K. (2004). Textile patterns and their epistemological functions. Textile, 2(3), 274-289.
  • [76] Chen, X., Huang, X. (2004). Evaluating fabric pilling with light-projected image analysis. Textile Research Journal, 74(11), 977-981.
  • [77] Briggs-Goode, A., Russell, A. (2011). Printed textile design, in Textile Design. Elsevier, 105-129e.
  • [78] COGNEX. 2018 [cited 2018 7/8/2018]; Web site: https://www.cognex.com/.
  • [79] Guruprasad, R., Behera, B. K. (2009). Automatic fabric inspection systems. [cited 2018 8/9/2018]; Web site: http://www.indiantextilejournal.com/articles/FAdetails.asp?id=2131
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c52c9609-5649-4039-a397-4a44481b6ac9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.