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Abstract: The fractional difference system of equations with
different fractional orders is considered. We obtain the existence
and uniqueness results for the initial value problem. Cone solutions
are presented. An example is given to illustrate the results.
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1. Introduction

Many papers and books devoted to fractional calculus and fractional differential
equations appeared recently (see, for example, Kilbas, Srivastava and Trujillo,
2006, or Podlubny, 1999). There are also quite a lot of studies already on
fractional difference calculus and equations, see, e.g., Abdeljawad (2011), Atici
and Eloe (2007), Chen, Luo and Zhou (2011), Holm (2011), Miller and Ross
(1988), Mozyrska and Girejko (2013), Ostalczyk (2012), and references therein.
On the other hand, theory of cone solutions is not well developed yet, especially
existence of cone solutions of fractional difference systems. We use the case
of the Riemann-Liouville type difference operator, used, for example, in Holm
(2011) and Atici and Eloe (2007). Comparing to the Grünwald-Letnikov type
operator used, for example, in Kaczorek (2007) it is important to define systems
with the operator which has its inverse. However, in the investigations of cone
solutions we stay with the recurrence methods of solutions similar to presented
in Kaczorek (2011).

We introduce a system of multi-order nonlinear fractional difference equa-
tions with a set of initial conditions and obtain the existence and uniqueness of
a solution. In contrast to the case that we consider in Mozyrska, Girejko and
Wyrwas (2012), here we propose the evaluation of fi, which are the right hand
sides of the examining system, at the neutral moment k ∈ N. Since we consider
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different fractional orders in one system, the gather-function to be a solution to
the system is proposed. Similarly as in Mozyrska, Girejko and Wyrwas (2012),
where systems with continuous time are considered, we formulate conditions for
the system to be viable with respect to a cone with definitions of cones inspired
by Kaczorek (2006, 2009).
The paper is organized in the following way. In Section 2 we gather prelimi-
nary definitions and facts and we also prove some results needed in the sequel.
Section 3 is devoted to systems of fractional difference equations. Section 4
concerns cone solutions to the system considered in Section 3 and it contains
an illustrative example.

2. Preliminaries

Let

Rn
+ = {x ∈ R

n : xi ≥ 0, 1 ≤ i ≤ n} (1)

and

Na := {a, a + 1, . . .} (2)

for a being a real number.
Let us denote, due to Atici and Eloe (2008),

t(α) :=
Γ(t + 1)

Γ(t− α + 1)
.

Fractional differences were originally defined in papers by Atici and Eloe (2008)
and Miller and Ross (1988). Here we state definitions following Holm (2011).

Definition 1. Let ϕ : Na → R and α > 0. Then the α-th order fractional sum
of ϕ started at a is defined by

(

∆−α
a ϕ

)

(t) =
1

Γ(α)

t−α
∑

s=a

(t− s− 1)(α−1)ϕ(s), (3)

where ∆−α
a ϕ is defined for t ∈ Na+α. Moreover, we additionally define

(

∆0
aϕ

)

(t)
:= ϕ(t) for t ∈ Na.

For α = 1, formula (3) takes the form
(

∆−1
a ϕ

)

(t) =
∑t−1

s=a ϕ(s) =
∫ t

a
ϕ(s)∆s,

which is the delta integral of ϕ on the set [a, t] ∩ N0.

The following definition, theorems, remarks and lemma come from Holm
(2011) and Atici and Eloe (2008). As we consider the case of systems with
orders from the interval (0, 1], we decide to give definition of the fractional
difference for that case.
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Definition 2. Let α ∈ (0, 1]. Then the difference operator is defined as

(∆α
aϕ) (t) =

(

∆
(

∆−(1−α)
a ϕ

))

(t) , t ∈ Na+1−α, (4)

where (∆ϕ) (t) = ϕ(t + 1) − ϕ(t) and ϕ : Na → R.

Theorem 1. Let ϕ be a real-valued function defined on Na and let α, β > 0.
Then the following equalities hold:

(∆−α
a+β(∆−β

a ϕ))(t) = (∆−(α+β)
a ϕ)(t) = (∆−β

a+α(∆−α
a ϕ))(t).

Theorem 2. For any α > 0 the following holds:

(

∆−α
a (∆ϕ)

)

(t) =
(

∆
(

∆−α
a ϕ

))

(t) −
(t− a)(α−1)

Γ(α)
ϕ(a), (5)

where ϕ is defined on Na.

One of the crucial tools in our considerations is the fractional power rule
formula. The proof for such a rule can be found in Atici and Eloe (2008) and
Holm (2011).

Lemma 1. Let a ∈ R and p > 0. Then

∆(t− a)(p) = p(t− a)(p−1) (6)

for any t for which both sides are well-defined. Furthermore, for α > 0,

∆−α
a+p(t− a)(p) = p(−α)(t− a)(p+α) , t ∈ Na+p+α (7)

and

∆α
a+p(t− a)(p) = p(α)(t− a)(p−α) , t ∈ Na+p+1−α .

Equation (7) can be also transformed as follows: let ϕ(s) = (s − a + p)(p),

then, for s ∈ Na (∆−α
a ϕ) (s + α) = Γ(p+1)

Γ(p+α+1) (k + p + α)(p+α), s = a + k.

The general version of the next theorem was established in the presented
form in Holm (2011), and with a slight difference in notations, also in Atici and
Eloe (2008). Here we use particular case of the result.

Theorem 3. Let α ∈ (0, 1]. Then, for t ∈ Na and x : Nα−1 → R the following
formula holds

(

∆−α
0

(

∆α
α−1x

))

(t) = x(t) −
t(α−1)

Γ(α)
x(α− 1) , t ∈ Nα . (8)
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3. System of fractional difference equations

Let us consider a set of known functions where fi : [0, T ]×R
n → R, i = 1, . . . n

and let (α) = (α1, . . . , αn), (a) = (a1, . . . , an) be finite sequences of orders
α1, . . . , αn ∈ (0, 1] and ai = αi − 1. Moreover, let xi : Nai

→ R, i = 1, . . . , n be
unknown functions on a different time set. Then, we introduce the evaluation of
fi at the neutral moment k ∈ N0 by the following function ϕi : N → R defined
by

ϕi(k) := fi(k + αi − 1, x1(k + α1 − 1), . . . , xn(k + αn − 1)) . (9)

Now, we are ready to state the notion of the system of fractional difference
equations with multi-order. We introduce here a system of nonlinear fractional
difference equations with a set of initial conditions and obtain the existence and
uniqueness of a solution. We state a multi-order initial value problem using the
following notation:

{ (

∆αi
ai
xi

)

(k) = ϕi(k)
(

∆αi−1
ai

xi

)

(0) = x0i ,
(10)

for i = 1, . . . , n, where k ∈ N0, αi ∈ (0, 1] and k + αi ∈ Nαi
∩ [0, T ].

By the solution to the problem (10) we mean the gather-function X with
values defined by

X(k) =







x1(k + a1)
...

xn(k + an)






, k ∈ N0, k + ai ∈ Nai

, (11)

where each component xi is defined on Nai
but a gather-function X can be

treated as the mapping on N0. Notice that Xi(k) = xi(k + ai).
Let us introduce the following notation

(

∆
(α)
(a)x

)

(k) :=







(

∆α1
a1
x1

)

...
(

∆αn
an

xn

)






(k)

and

F (k,X(k)) := F (k, x1(k + a1), . . . , xn(k + an)) =







ϕ1(k)
...

ϕn(k)






,

then system (10) can be written shortly as

(

∆
(α)
(a)x

)

(nh) = F (k,X(k)) , X(0) =







x01

...
x0n






. (12)
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By k ∈ N0 we mean the neutral time, while times k + αi represent mea-
surements of time in different time zones. To construct equivalent summation
equations to the multi-order initial value problem (10) we apply the ∆−αi

0 op-
erators separately to the equations

(

∆αi
ai
xi

)

(k) = ϕi(k):

(

∆−αi

0

(

∆αi

ai
xi

))

(k + αi) =
(

∆−αi

0 ϕi

)

(k + αi), k ∈ N . (13)

Now we can apply Theorems 1 and 3 and get

(

∆−αi

0

(

∆αi

ai
xi

))

(k + αi) =
(

∆−αi

0

(

∆
(

∆−(1−αi)
ai

xi

)))

(k + αi)

=
(

∆
(

∆−αi

0

(

∆−(1−αi)
ai

xi

)))

(k + αi) −
(k + αi)

(αi−1)

Γ(αi)

(

∆−(1−αi)
ai

xi

)

(0)

= xi(k + αi) −
(k + αi)

(αi−1)

Γ(αi)
xi(ai) =

(

∆−αi

0 ϕi

)

(k + αi) ,

where

(

∆−αi

0 ϕi

)

(k + αi) =
1

Γ(αi)

k
∑

s=0

(k + αi − σ(s))(αi−1)
ϕi(s)

=

k
∑

s=0

(k + αi − σ(s))
(αi−1)

Γ(αi)
ϕi(s)

with σ(s) = s + 1, according to the definition (9). Hence, for k ∈ N0 we can
state the recursive formula for the solutions for each component separately:

xi(k + αi) =
(k + αi)

(αi−1)

Γ(αi)
x0i +

k
∑

s=0

(k + αi − σ(s))
(αi−1)

Γ(αi)
ϕi(s)

or equivalently

Xi(k) =
(k − 1 + αi)

(αi−1)

Γ(αi)
x0i +

k−1
∑

s=0

(k − 2 + αi − s)(αi−1)

Γ(αi)
ϕi(s) , k ∈ N1 .

Since also the value of X(k) is recursively defined, it states the unique solu-
tion to the multi-order initial value problem (10).

Next, by applying formulas (3) and (4) to the left hand side of system (10)
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one gets (we omit for the moment all i’s):

(∆α
α−1x)(k) = ∆(∆

−(1−α)
α−1 x)(k) =

(∆
−(1−α)
α−1 x)(k + 1) − (∆

−(1−α)
α−1 x)(k) =

1

Γ(1 − α)

k+1
∑

s=0

(k + 1 − α− s)(−α)x(s + α− 1)−

1

Γ(1 − α)

k
∑

s=0

(k − α− s)(−α)x(s + α− 1) =

1

Γ(1 − α)

k+1
∑

s=0

Γ(k + 2 − α− s)

Γ(k + 2 − s)
x(s + α− 1)−

1

Γ(1 − α)

k
∑

s=0

Γ(k + 1 − α− s)

Γ(k + 1 − s)
x(s + α− 1) =

1

Γ(1 − α)

k
∑

s=0

Γ(k + 1 − α− s)

Γ(k + 1 − s)

(

k + 1 − α− s

k + 1 − s
− 1

)

x(s + α− 1)+

1

Γ(1 − α)

Γ(1 − α)

Γ(1)
x(k + α) =

k
∑

s=0

Γ(k + 1 − α− s)

Γ(k + 2 − s)Γ(−α)
x(s + α− 1) + x(k + α) .

(14)

Since
(

k−s−α
k−s+1

)

= (−1)k−s
(

α
k−s+1

)

, thus, for each i = 1, ..., n, n ∈ N, the gather-
function (11), which is a solution, has the following form

xi(k+αi) = ϕi(k)+αixi(k+ai)+

k−1
∑

s=0

(−1)k−s

(

αi

k − s + 1

)

xi(s+ai) , k ∈ N0 ,

(15)

and for k = 0 the sum in the right hand side of formula (15) is taken as equal
zero.
Taking into account the general form of the system given by formula (12), the
solution to this system has the following form

X(k + 1) = F (k,X(k)) + diag(α1, ..., αn)X(k)+

k−1
∑

s=0

diag

(

(−1)k−s

(

α1

k − s + 1

)

, ..., (−1)k−s

(

αn

k − s + 1

))

X(s) .
(16)

If we define Λk,s := diag
(

(−1)k−s
(

α1

k−s+1

)

, ..., (−1)k−s
(

αn

k−s+1

)

)

, what for

s = k gives Λk,k = diag(α1, ..., αn), then formula (16) can be rewritten shortly
as
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X(k + 1) = F (k,X(k)) + Λk,kX(k) +

k−1
∑

s=0

Λk,sX(s) =

F (k,X(k)) +

k
∑

s=0

Λk,sX(s) .

(17)

Lemma 2. If 0 < α ≤ 1, then

(−1)s
(

α

s + 1

)

≥ 0 for s ∈ N1 . (18)

For α = 1 one gets (−1)s
(

1
s+1

)

= 0 .

Proof. We accomplish the proof by induction. The hypothesis is true for s = 1,
since

−1 ·

(

α

2

)

> 0 .

Assuming (−1)s
(

α
s+1

)

= (−1)s Γ(α+1)
Γ(s+2)Γ(α−s) > 0 for s ∈ N1 , we show that the

hypothesis is valid for s + 1. Let us write

(−1)s+1

(

α

s + 2

)

= (−1)s · (−1)
Γ(α + 1)

(s + 2)Γ(s + 2)Γ(α− s− 1)
=

(−1)s · (−1)
Γ(α + 1) · (α − s− 1)

(s + 2)Γ(s + 2)Γ(α− s)
= (−1)s

(

α

s + 1

)

s + 1 − α

s + 2
> 0 .

what proves the hypothesis.

4. Cone solutions

Based on Kaczorek (2008, 2009) we consider the following definitions:

Definition 3. Let

P =







p1
...
pn






∈ R

n×n

be nonsingular and pi = (pi1, . . . , pin) be its i-th row (i = 1, . . . , n). The set

K := {x ∈ R
n : ∀i = 1, . . . , n : pix ≥ 0}

is called a linear cone generated by the matrix P in R
n. Moreover,

P := {X ∈ Xn : ∀k ∈ N0 X(k) ∈ K}

is called a linear cone generated by the matrix P in the space Xn, where Xn :=
{X : N0 → R

n} and xi : Nai
→ R.
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Remark 1. Let us observe that K ⊂ P in the sense that K consists of constant
mappings. Moreover, for P = I being identity matrix we have that: K = R

n
+.

Definition 4. Let a matrix P ∈ R
n×n be given. The nonlinear fractional

difference system (10) is called a P cone fractional system if X(·) ∈ P for any
x0 ∈ K.

Theorem 4. Let K and P be given as in Definition 3 and X(0) ∈ K. If for
every x ∈ K,

F (k, x) + Λk,k · x ∈ K , (19)

then for every k ∈ N0 system (10) is a P cone system.

Proof. By assumption we have X(0) ∈ K. We lead the proof by induction.
First, let us check if the formula holds for k = 1. Indeed, we obviously get
X(1) = F (0, X(0))+Λ1,1X(0) ∈ K. Now we assume that the hypothesis is true
for some k, i.e. X(k) ∈ K. Next, by assumption and Lemma 2 we see that

pi ·X(k + 1) = pi · (F (k,X(k)) + Λk,kX(k)) +

k
∑

s=1

Λk,s · pi ·X(s) ≥ 0 , (20)

what finishes the proof.

Remark 2. Let us notice that for the system (10) with autonomous right hand
side one can get the statement of Theorem 4 in the form ”if and only if”. In
non-autonomous case this is obviously in general not fulfilled.

Corollary 1. Let P be a nonsingular n × n matrix. Then system (10) with
the right hand side given by F (k,X(k)) = AX(k) is a P cone system if and
only if P · [A + Λk,k]P−1 ∈ R

n×n
+ .

Proof. Let us prove necessity. We assume that the system is a P cone system,
which means that P ·X(k+1) ∈ R

n×n
+ , i.e. P (A+Λ)X(k)+

∑k

s=1 Λk,s ·P ·X(k−
s) ∈ R

n×n
+ with Λ = Λk,k. Therefore, P (A + Λ)X(0) ∈ R

n×n
+ , since X(0) ∈ K,

which means that z = P ·X(0) ∈ R
n
+, and by Definition 4 it is arbitrary. Then,

since X(0) = P−1z, we can write P (A + Λ)P−1z ∈ R
n×n
+ , where z is arbitrary

and we get the thesis.
Sufficiency follows directly from the theorem.

Example 1. Let a = α − 1, b = β − 1 and let us consider the following two
dimensional linear initial value problem:















(∆α
ax) (k) = −αx(k + a) + βy(k + b),

(

∆β
b y

)

(k) = x(k + a) + (2 − β)y(k + b), k = 0, 1, 2, . . .
(

∆
−(1−α)
a x

)

(0) = x0,
(

∆
−(1−β)
b y

)

(0) = y0 ,

. (21)
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The vector of values of solutions is stated as the solution of the summation
equations

X(k) =








(k+α−1)(α−1)x0

Γ(α) +
k−1
∑

s=0

(k−1+α−σ(s))(α−1)

Γ(α) (−αx(s + a) + βy(s + b))

(k+β−1)(β−1)y0

Γ(β) +
k−1
∑

s=0

(k−1+β−σ(s))(β−1)

Γ(β) (x(s + a) + (2 − β)y(s + b))









,

(22)

where k ∈ N1. Let us take P =

[

−1 1
1 1

]

. It is obvious that P ·[A + Λk,k]P−1 =

0.5

[

1 + β 3 + β

1 − β 3 − β

]

∈ R
n×n
+ . So, system (21) is a (P) cone fractional system.

Let us change the cone by using the matrix Q =

[

−1 1
0 1

]

. It means that

now in the set K we have points (x, y) such that: y ≥ x and y ≥ 0. It is easy to

check again that Q · [A + Λk,k]Q−1 =

[

−1 3 − β

−1 3

]

6∈ R
n×n
+ . So, system (21)

is not a (Q) cone fractional system, see Fig. 1. We see this, for example, with

x0 = −1, y0 = 0, where we have X(1) =

[

0
−1

]

6∈ K.

Figure 1. The trajectory of system (21) for n = 6 steps and being not a (Q)
cone fractional system
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5. Conclusions

We considered the fractional difference systems of equations with different frac-
tional orders - multi-order systems. We obtained the recursive formula of solu-
tion to such a system, which is a unique solution to this initial value problem.
We formulated conditions that guarantee for cone systems the existence of cone
solutions. An example is also given to illustrate the results.
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