PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concise Review of Light-Driven Micromotor Synthesis and its Environmental Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Light-powered micromotors are a new type of micromotor that can be used for water purification treatment. This paper focuses on the synthesis processes and its application in water remediation. This mini review will highlight the great potential of these light powered micromotor as well as the significance of preparing them for environmental applications. Photocatalytic micromotors or light-powered micromotors have been intensively researched over the last several years for several applications, such as environmental remediation, biomedicine and micropumps. It has been found that conventional wastewater treatment is commercially inefficient in water remediation. The emphasis then was on a new solution of using micromotor as a potential replacement for water remediation. Many studies have been carried out over the years on the synthesis of these light-powered micromotors, which revolves around the materials used, and applications. This paper, therefore, reflects on the advancement of light-powered micromotors and will be concentrating on the synthesis processes and its application in water remediation. This mini-review will highlight the great potential of these light-driven micromotors as well as the significance of preparing them for environmental applications.
Twórcy
  • Universiti Teknologi MARA EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
  • Center of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000 Kangar, Perlis, Malaysia
autor
  • EMZI Holding Sdn Bhd, H-2, Avenue 2/1, Kedah Halal Park,08000 Sungai Petani, Kedah, Malaysia
autor
  • Universiti Teknologi MARA EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
  • Universiti Teknologi MARA Shah Alam, School of Chemical Engineering, College of Engineering, 40450 Shah Alam, Selangor, Malaysia
  • Universiti Malaysia Perlis (UniMAP), School of Manufacturing Engineering, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Center of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000 Kangar, Perlis, Malaysia
autor
  • Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
  • Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
  • Universiti Teknologi MARA EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
autor
  • Universiti Teknologi MARA EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
Bibliografia
  • [1] B. Jurado-Sánchez, M. Pacheco, R. Maria-Hormigos, A. Escarpa, Perspectives on Janus micromotors: Materials and applications. Appl. Mater. Today 9, 407-418 (2017).
  • [2] M. Liu, Y. Sun, T. Wang, Z. Ye, H. Zhang, B. Dong, C.Y. Li, A biodegradable, all-polymer micromotor for gas sensing applications, J. Mater. Chem. C 4 (25), 5945-5952 (2016).
  • [3] J. Orozco, A. Cortés, G. Cheng, S. Sattayasamitsathit, W. Gao, X. Feng, Y. Shen, J. Wang, Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J. Am. Chem. Soc. 135 (14), 5336 5339 (2013).
  • [4] J. Orozco, G. Cheng, D. Vilela, S. Sattayasamitsathit, R. Vazquez‐Duhalt, G. Valdés‐Ramírez, O.S. Pak, A. Escarpa, C. Kan, J. Wang, Micromotor-based high-yielding fast oxidative detoxification of chemical threats. Angew. Chemie - Int. Ed. 52 (50), 13276-13279 (2013).
  • [5] C. Huang, X. Shen, Janus molecularly imprinted polymer particles. Chem. Commun. 50 (20), 2646-2649 (2014).
  • [6] M. Guix, J. Orozco, M. García, W. Gao, S. Sattayasamitsathit, A. Merkoçi, A. Escarpa, J. Wang, Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano, 6 (5), 4445-4451 (2012).
  • [7] W. Gao, X. Feng, A. Pei, Y. Gu, J. Li, J. Wang, Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5 (11), 4696-4700 (2013).
  • [8] W. Gao, J. Wang, The environmental impact of Micro/Nanomachines: A Review. ACS Nano 8 (4), 3170-3180 (2014).
  • [9] V.V. Singh, J. Wang, Nano/micromotors for security/defense applications. A review, Nanoscale 7 (46), 19377-19389 (2015).
  • [10] J. Li, V.V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann, R. Dong, W. Gao, B. Jurado-Sanchez, Y. Fedorak, J. Wang, Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8 (11), 11118-11125 (2014).
  • [11] M. Enachi, M. Guix, V. Postolache, V. Ciobanu, V.M. Fomin, O.G. Schmidt, I. Tiginyanu, Light-induced motion of microengines based on microarrays of TiO2 nanotubes. Small 12 (39), 5497-5505 (2016).
  • [12] J. Palacci, S. Sacanna, A. Vatchinsky, P.M. Chaikin, D.J. Pine, Photoactivated colloidal dockers for cargo transportation. J. Am. Chem. Soc. 135 (43), 15978-15981 (2013).
  • [13] Q. Wang, C. Wang, R. Dong, Q. Pang, Y. Cai, Steerable light-driven TiO2-Fe Janus micromotor. Inorg. Chem. Commun. 91, 1-4 (2018).
  • [14] Q. Chi, Z. Wang, F. Tian, J. You, S. Xu, A review of fast buble-driven micromotors powered by biocompatible fuel: Low-concentration fuel, bioactive fluid and enzyme. Micromachines 9 (10), 537 (2018).
  • [15] H. Yu, W. Tang, G. Mu, H. Wang, X. Chang, H. Dong, L. Qi, G. Zhang, T. Li, Micro-/nanorobots propelled by oscillating magnetic fields. Micromachines 9 (11), 540 (2018).
  • [16] K. Villa, M. Pumera, Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chem. Soc. Rev. 48 (19), 4966-4978 (2019).
  • [17] L. Ren, D. Zhou, Z. Mao, P. Xu, T.J. Huang, T.E. Mallouk, Rheotaxis of Bimetallic Micromotors Driven by Chemical-Acoustic Hybrid Power. ACS Nano 11 (10), 10591-10598 (2017).
  • [18] Q. Zhang, R. Dong, Y. Wu, W. Gao, Z. He, B. Ren, Light-driven Au-WO3@C Janus micromotors for rapid photodegradation of dye pollutants. ACS Appl. Mater. Interfaces 9 (5), 4674-4683 (2017).
  • [19] R. Mout, D.F. Moyano, S. Rana, V.M. Rotello, Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 41 (7), 2539-2544 (2012).
  • [20] L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Light-driven micro/nanomotors: From fundamentals to applications. Chem. Soc. Rev. 46 (22), 6905-6926 (2017).
  • [21] W. Gao, A. Pei, R. Dong, J. Wang, Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J. Am. Chem. Soc. 136 (6), 2276-2279 (2014).
  • [22] Q. Wang, C. Wang, R. Dong, Q. Pang, Y. Cai, Steerable light-driven TiO2-Fe Janus micromotor. Inorg. Chem. Commun. 91, 1-4 (2018).
  • [23] X. Li,Y. Sun, Z. Zhang, N. Feng, H. Song, Y. Liu, L. Hai, J. Cao, G. Wang, Visible light-driven multi-motion modes CNC/TiO2 nanomotors for highly efficient degradation of emerging contaminants. Carbon N. Y. 155, 195-203 (2019).
  • [24] Y. Chen, H. Gao, D. Wei, X. Dong, Y. Cao, Langmuir-Blodgett assembly of visible light responsive TiO2 nanotube arrays/graphene oxide heterostructure. Appl. Surf. Sci. 392, 1036-1042 (2017).
  • [25] G. Castillo-Dalí, R. Castillo-Oyagüe, A. Terriza, J. Saffar, A. Batista-Cruzado, C.D. Lynch, A.J. Sloan, J. Gutiérrez-Pérez, D. Torres-Lagares, Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes. J. Dent. 47, 71-79 (2016).
  • [26] G. Vélu, D. Rèmiens, Electrical properties of sputtered PZT films on stabilized platinum electrode. J. Eur. Ceram. Soc. 19 (11), 2005-2013 (1999).
  • [27] L. Marchiori, P. Jorge, A. De Moura, P.D. De, Titanium dioxide micromotors - Applied to removal of emerging contaminants. 1528-1530 (2016).
  • [28] R. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren, Q. Wang, Y. Cai, Visible-light-driven BiOI-based janus micromotor in pure water. J. Am. Chem. Soc. 139 (5), 1722-1725 (2017).
  • [29] Y.S. Kochergin, K. Villa, F. Novotný, J. Plutnar, M.J. Bojdys, M. Pumera, Multifunctional Visible-Light Powered Micromotors Based on Semiconducting Sulfur- and Nitrogen-Containing Donor - Acceptor Polymer. Advanced Functional Materials 30 (38), 1-9 (2020).
  • [30] L. Liu, T. Bai, Q. Chi, Z. Wang, S. Xu, Q. Liu, Q. Wang, How to Make a Fast, Efficient Bubble-Driven Micromotor: A Mechanical View. Micromachines 8 (9), 267 (2017).
  • [31] L. Yang, X. Chen, L. Wang, Z. Hu, C. Xin, M. Hippler, W. Zhu, Y. Hu, J. Li, Y. Wang, L. Zhang, D. Wu, J. Chu, Targeted Single‐Cell Therapeutics with Magnetic Tubular Micromotor by One‐Step Exposure of Structured Femtosecond Optical Vortices. Adv. Funct. Mater. 29 (45), 1905745 (2019).
  • [32] K. Villa, C.L. Manzanares Palenzuela, Z. Sofer, S. Matějková, M. Pumera, Metal-Free Visible-Light Photoactivated C 3 N 4 Bubble-Propelled Tubular Micromotors with Inherent Fluorescence and On/Off Capabilities. ACS Nano 12 (12), 12482-12491 (2018).
  • [33] Y. Yuan, C. Gao, D. Wang, C. Zhou, B. Zhu, Q. He, Janus-micromotor-based on-off luminescence sensor for active TNT detection. Beilstein J. Nanotechnol. 10, 1324-1331 (2019).
  • [34] A.M. Pourrahimi, M. Pumera, Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances. Nanoscale 10 (35), 16398-16415 (2018).
  • [35] R. Wang, W. Guo, X. Li, Z. Liu, H. Liu, S. Ding, Highly efficient MOF-based self-propelled micromotors for water purification. RSC Adv. 7 (67), 42462-42467 (2017).
  • [36] Y. Ying, A.M. Pourrahimi, C.L. Manzanares-Palenzuela, F. Novotny, Z. Sofer, M. Pumera, Light-Driven ZnO Brush-Shaped Self-Propelled Micromachines for Nitroaromatic Explosives Decomposition. Small 16 (27), 1-9 (2019).
  • [37] H. Wang, M. Pumera, Fabrication of micro/nanoscale motors. Chem. Rev. 115 (16), 8704-8735 (2015).
  • [38] E. Karshalev, B. Esteban-Fernández de Ávila, J. Wang, Micromotors for‚ Chemistry-on-the-Fly‘. J. Am. Chem. Soc. 140 (11), 3810-3820 (2018).
  • [39] B. Khezri, F. Novotný, J.G.S. Moo, M.Z.M. Nasir, M. Pumera, Confined Bubble-Propelled Microswimmers in Capillaries: Wall Effect, Fuel Deprivation, and Exhaust Product Excess. Small 16 (27), 202000413 (2020).
  • [40] C. Liang, C. Zhan, F. Zeng, D. Xu, Y. Wang, W. Zhao, J. Zhang, J. Guo, H. Feng, X. Ma, Bilayer Tubular Micromotors for Simultaneous Environmental Monitoring and Remediation. ACS Appl. Mater. Interfaces 10 (41), 35099-35107 (2018).
  • [41] Y. Sun, Y. Liu, D. Zhang, H. Zhang, J. Jiang, R. Duan, J. Xiao, J. Xing, D. Zhang, B. Dong, Calligraphy/Painting Based on a Bioinspired Light-Driven Micromotor with Concentration Dependent Motion Direction Reversal and Dynamic Swarming Behavior. ACS Appl. Mater. Interfaces 11 (43), 40533-40542 (2019).
  • [42] Y. Wang, C. Zhou, W. Wang, D. Xu, F. Zeng, C. Zhan, J. Gu, M. Li, W. Zhao, J. Zhang, J. Guo, H. Feng, X. Ma, Photocatalytically Powered Matchlike Nanomotor for Light-Guided Active SERS Sensing, Angew. Chemie - Int. Ed. 57 (40), 13110-13113 (2018).
  • [43] I.T. Cousins, C.A. Staples, G.M. Kleĉka, D. Mackay, A Multimedia Assessment of the Environmental Fate of Bisphenol A. Hum. Ecol. Risk Assess. An Int. J. 8 (5), 1107-1135 (2002).
  • [44] J.G. Speight, Remediation technologies, (2020).
  • [45] NORMAN Association, Emerging substances. https://www.norman-network.net/?q=node%2F19 (accessed Nov. 07, 2019).
  • [46] A.I. Stefanakis, J.A. Becker, A review of emerging contaminants in water: Classification, sources, and potential risks. Impact Water Pollut. Hum. Heal. Environ. Sustain., 55-80 (2015).
  • [47] K. Kümmerer, The presence of pharmaceuticalsin the environment due to human use - present knowledge and future challenges. J. Environ. Manage. 90 (8), 2354-2366 (2009).
  • [48] B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72, 3-27 (2014).
  • [49] C.J. Houtman, Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. J. Integr. Environ. Sci. 7 (4), 271-295 (2010).
  • [50] J. Tong, D. Wang, D. Wang, F. Xu, R. Duan, D. Zhang, J. Fan, B. Dong, Visible-Light-Driven Water-Fueled Ecofriendly Micromotors Based on Iron Phthalocyanine for Highly Efficient Organic Pollutant Degradation. Langmuir 36 (25), 6930-6937 (2020).
  • [51] J. Wang, R. Dong, Q. Yang, H. Wu, Z. Bi, Q. Liang, Q. Wang, C. Wang, Y. Mei, Y. Cai, One body, two hands: Photocatalytic function- and Fenton effect-integrated light-driven micromotors for pollutant degradation. Nanoscale 11 (35), 16592-16598 (2019).
  • [52] Y. Liu, J. Li, J. Li, X. Yan, F. Wang, W. Yang, D.H.L. Ng, J. Yang, Active magnetic Fe3+-doped BiOBr micromotors as efficient solar photo-fenton catalyst. J. Clean. Prod. 252, 119573 (2020).
  • [53] Z. Zhan, F. Wei, J. Zheng, C. Yin, W. Yang, L. Yao, S. Tang, D. Liu, Visible light driven recyclable micromotors for ‘on-the-fly’ water remediation. Mater. Lett. 258, 126825 (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5256bf3-8803-4293-a57b-b8f5bbbce0fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.