Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Metodyka określania zdolności inicjowania zapalników przy użyciu testu wybuchu podwodnego
Języki publikacji
Abstrakty
Currently, detonators are considered the initial source of detonation in almost all blasting operations. The possibility of developing and implementing many modern and innovative detonators into production requires conducting appropriate tests which will determine their safety in use or impact on the environment. It needs to be borne in mind that the explosive charge in a detonator, needs to be sufficient to provide an appropriate energy impulse to initiate the explosive material. In order to determine the initiating capability of detonators, an underwater explosion test can be used. Underwater detonation leads to rapid expansion of gaseous products, which results in the formation of a gas bubble which undergoes successive collapse. This article presents the methodology of an underwater explosion test based on testing carried out on selected detonators.
Obecnie zapalniki są traktowane jako źródło inicjowania detonacji niemal we wszystkich operacjach strzałowych. Możliwość opracowania i wdrożenia do produkcji wielu nowoczesnych i innowacyjnych zapalników wymaga przeprowadzenia odpowiednich testów, które określą bezpieczeństwo użytkowania czy ich wpływ na środowisko. Należy mieć na uwadze, iż przy pobudzaniu ładunku niezbędne jest dostarczenie odpowiedniego impulsu energii, który zainicjuje dany materiał wybuchowy. W celu określenia zdolności inicjalnej zapalników można wykorzystać test wybuchu podwodnego. Podwodna detonacja prowadzi do uformowania pęcherza gazowego, w wyniku gwałtownej ekspansji produktów gazowych, który to ulega kolejnym kolapsom pod wpływem ciśnienia hydrostatycznego. W artykule przedstawiono metodykę testu wybuchu podwodnego na podstawie przeprowadzonych badań dla wybranych zapalników.
Czasopismo
Rocznik
Tom
Strony
131--140
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
- Łukasiewicz Research Network ‒ Institute of Industrial Organic Chemistry, Explosive Techniques Research Group, 1 Zawadzkiego Street, 42-693 Krupski Młyn, Poland
autor
- Łukasiewicz Research Network ‒ Institute of Industrial Organic Chemistry, Explosive Techniques Research Group, 1 Zawadzkiego Street, 42-693 Krupski Młyn, Poland
autor
- Łukasiewicz Research Network ‒ Institute of Industrial Organic Chemistry, Explosive Techniques Research Group, 1 Zawadzkiego Street, 42-693 Krupski Młyn, Poland
Bibliografia
- [1] Heering P., Cavicchi E. Teaching about Nature of Science through Historical Experiments. [in:] Nature of Science in Science Instruction: Rationales and Strategies. (Comas W.F., Ed.), Springer, 2020, pp. 609-626; https://doi.org/10.1007/978-3-030-57239-6_33.
- [2] Sridhar Iya K. Effect of an Electric Field on a One-Dimensional Flame. Can. J. Chem. Eng. 1974, 52(1): 117-120; https://doi.org/10.1002/cjce.5450520119.
- [3] Watson W.I. Experiments and Observations, Tending to Illustrate the Nature and Properties of Electricity. Philos. Trans. R. Soc. 1746, 43(477): 481–501; http://dx.doi.org/10.1098/rstl.1744.0094.
- [4] Franklin B. Experiments and Observations on Electricity: Part II. Made at Philadelphia in America. London: Printed and fold by E. Cave, 1753.
- [5] Hare R. A Memoir on Some New Modifications of Galvanic Apparatus, with Observations in Support of his Theory of Galvanism. Philos. Mag. 1821, 57(276): 284-294.
- [6] The Mechanics’ Magazine, Museum, Register, Journal, and Gazette. (Clinton R.J., Herschel J.F., Fox T.W., Cumberland G., Eds.), 1845.
- [7] Hall C., Howell S.P. Investigation of Detonators and Electric Detonators. Bureau of Mines, Bulletin 59, Washington: Government Printing Office, 1913.
- [8] Weir J. Nitroglycerine and Guncotton: a Double Centenary. Nature 1946, 158(4003): 83-85.
- [9] Burgen A. An Explosive Story. Eur. Rev. 2004, 12(2): 209-215.
- [10] Cooper P.W. Explosives Engineering. Wiley-VCH, 2018; ISBN: 978-1-119-53717-5.
- [11] Van Gelder A.P., Schlatter H. History of the Explosives Industry in America. New York: Columbia University Press, 1927.
- [12] Krehl P.O.K. History of Shock Waves. Explosions and Impact: A Chronological and Biographical Reference. Berlin-Heidelberg: Springer Verlag, 2008; ISBN 978-3-540-30421-0.
- [13] Nilsson A., Jacobson J. Safety and Reliability in Initiation Systems with Electronic Detonators. Swedish National Testing and Research Institute, Physics & Electrotechnics, SP Report 1996:37, 1996.
- [14] Ioannou E., Nikiforakis N. Multiphysics Modeling of the Initiating Capability of Detonators. I. The Underwater Test. J. Appl. Phys. 2021, 129(2) paper 025902; https://doi.org/10.1063/5.0030478.
- [15] Wu S.Z., Li H.J. Assembly Production Status and Development Trend of Industrial Electric Detonator. Appl. Mech. Mat. 2014, 644-650: 4714-4717; https://doi.10.4028/www.scientic.net/AMM.644-650.4714.
- [16] Edmonds E., Hazelwood A., Lilly T., Mansell J. Development of In-Situ Surface Area Analysis for Detonators. Powder Technol. 2007, 174(1-2): 42-45; http://dx.doi.org/10.1016%2Fj. powtec.2006.10.019.
- [17] Petr V., Lozano E. Characterizing the Energy Output Generated by a Standard Electric Detonator Using Shadowgraph Imaging. Shock Waves 2017, 27(5): 781-793; https://ui.adsabs.harvard.edu/link_gateway/2017ShWav..27..781P/doi:10.1007/s00193-017-0718-8.
- [18] Lease N., Burnside N.J., Brown G.W., Lichthardt J.P., Campbell M.C., Buckley R.T., Kramer J.F., Parrack K.M., Spencer P.A., Tian H., Sjue S.K., Preston D.N., Manner W.W. The Role of Pentaerythritol Tetranitrate (PETN) Aging in Determining Detonator Firing Characteristics. Propellants Explos. Pyrotech. 2021, 46(1): 26-38; https://doi.org/10.1002/prep.202000181.
- [19] Cardu M., Giraudi A., Oreste P. A Review of the Benefits of Electronic Detonators. Rem: Rev. Esc. Minas 2013, 66(3): 375-382; https://doi.org/10.1590/S0370-44672013000300016.
- [20] Bohanek V., Dobrilovic M., Skrlec V. Influence of the Initiation Energy on the Velocity of Detonation of ANFO Explosive. Cent. Eur. J. Energ. Mater. 2013, 10(4): 555-568.
- [21] Klapotke T.M., Witkowski T.G., Wilk Z., Hadzik J. Determination of the Initiating Capability of Detonators Containing TKX-50, MAD-X1, PETNC, DAAF, RDX, HMX or PETN as a Base Charge, by Underwater Explosion Test. Propellants Explos. Pyrotech. 2016, 41(1): 92-97; https://doi.org/10.1002/prep.201500220.
- [22] Chen Y., Chen X., Wu D., Xu S., Liu D., Xu M. Underwater Explosion Analysis of Hexogen-Enriched Novel Hydrogen Storage Alloy. J. Energ. Mater. 2016, 34(1): 49-61.
- [23] Huang C., Liu M., Wang B., Zhang Y. Underwater Explosion of Slender Explosives: Directional Effects of Shock Waves and Structure Responses. Int. J. Impact Eng. 2019, 130(8): 266-280; https://doi.org/10.1016/j.ijimpeng.2019.04.018.
- [24] Li G., Shi D., Wang L., Zhao K. Measurement Technology of Underwater Explosion Load: A Review. Ocean Eng. 2022, 254 paper 111383; https://doi:10.1016/j.oceaneng.2022.111383.
- [25] Li X., Liang M., Tian Z., Zhou M. Dynamic Response and Cumulative Damage Mechanism of Simplified Hull Girders under Repeated Underwater Explosions. Thin-Walled Struct. 2024, 196(3) paper 111554; https://doi.org/10.1016/j.tws.2023.111554.
- [26] Brett J.M., Krelle A. A Study of Bubble Collapse Pressure Pulse Waves from Small Scale Underwater Explosions Near the Water Surface. J. Sound Vib. 2018, 435: 91-103; https://doi:10.1016/j.jsv.2018.08.004.
- [27] Mao Z.Y., Duan C.C., Hu H.W., Feng H.Y., Song P. Review of Evaluation Methods of Underwater Explosion Power of Explosives. J. Phys.: Conf. Series. 2023, 2478(3) paper 032018; https://doi.org/10.1088/1742-6596/2478/3/032018.
- [28] Bjørnø L., Levin P. Underwater Explosion Research Using Small Amounts of Chemical Explosives. Ultrasonics 1976, 14(6): 263-267; https://doi.org/10.1016/0041-624X(76)90033-0.
- [29] Zhang P., Liu J.H., Pan J.Q., Mao H.B., Zhang J., Chen X.B. An Evaluation Method for Near-Field Underwater Explosion Power Based on Effect Target. Acta Armamentarii 2016, 37(8): 1430-1435; https://doi.org/10.3969/j.issn.1000-1093.2016.08.013.
- [30] Sheng Z., Liu J., Hang X., Gao T., Cheng J., Jing Y. On an Array-Sensor Technology for Measuring Bubble Jet Load Generated by Underwater Explosion. Explos. Shock Waves 2021, 41(3) paper 031405.
- [31] Zhao Z., Rong J., Zhang S. An Interface Sharpening Technique for the Simulation of Underwater Explosions. Ocean Eng. 2022, 266(1) paper 112922; https://doi.org/10.1016/j.oceaneng.2022.112922.
- [32] Cao W., He Z., Chen W. Experimental Study and Numerical Simulation of the Afterburning of TNT by Underwater Explosion Method. Shock Waves 2014, 24: 619-624; https://doi.org/10.1007/s00193-014-0527-2.
- [33] Ghoshal R., Mitra N. Underwater Oblique Shock Wave Reflection. Phys. Rev. Fluids 2018, 3(1) paper 013403; https://doi.org/10.1103/PhysRevFluids.3.013403.
- [34] Schoch S., Nikiforakis N. Numerical Modelling of Underwater Detonation of Non-Ideal Condensed-Phase Explosives. Phys. Fluids 2015, 27(1) paper 016101; https://doi.org/10.1063/1.4905337.
- [35] Explosives for Civil Uses ‒ Detonators and Relays. Part 15: Determination of Equivalent Initiating Capability. EN 13763-15:2004, 2004.
- [36] Pawlus K., Stolarczyk A., Jarosz T., Polis M., Szydlo K., Hawełek Ł., Waśkiewicz S., Łapkowski M. Energetic Coordination Compounds: Investigation of Aliphatic Ligands and Development of Prototype Detonators. Int. J. Mol. Sci. 2024, 25(16) paper 8645; https://doi.org/10.3390/ijms25168645.
- [37] Kiciński R., Szturomski B. Pressure Wave Caused by Trinitrotoluene (TNT) Underwater Explosion ‒ Short Review. Appl. Sci. 2020, 10(10) paper 3433; https://doi.org/10.3390/app10103433.
- [38] Electronic Detonators. KGHM Group, https://nitroerg.pl/wp-content/uploads/2019/03/ELECTRICDETONATORS-Data-sheet-1.pdf [Retrieved 10.12.2024].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5238296-1c75-48ec-80fa-a3d774aff6f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.