PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Correlation Between Hydrochemical Component of Surface Water and Groundwater in Nida Valley, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Nida valley study area underwent examination to investigate the hydrochemical components and the correlation between groundwater (GW) and surface water (SW). Over a 12-month period from November 2021 to October 2022, 9 monitoring points were established, consisting of 7 GW points and 2 SW points, with a monitoring frequency of once per month. The research findings indicate that the hydrochemical components and direction of GW flow in the study area can be classified into 3 distinct regions. The chemical composition is complex in areas near the Nida River, stable in the region near the Smuga Umianowicka branch, and different in other areas. It was observed that the SW in the Nida River and Smuga Umianowicka branch exhibits a relatively uncomplicated chemical composition due to minimal human impact in the natural area. However, dissimilarities between them were also identified and explained by the flow regulation of the dam built on the branch within the study area. The application of the Shapiro-Wilk test (α = 0.05) and Kruskal-Wallis test (α = 0.05) revealed statistically significant differences among the recorded hydrochemical component values throughout the measurement period. Furthermore, Pearson’s correlation coefficient analysis (α = 0.001) indicated correlations between the hydrochemical components of SW and GW in the riparian area and strong correlations among GW samples. Principal Component Analysis (PCA) identified significant dissimilarity and similarity between GW and SW samples based on their characteristics.
Rocznik
Strony
167--177
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Kraków, Poland
  • Institute of Chemistry, Biology and Environment, Vinh University, 182 Le Duan St, Vinh City, Nghe An Province, Vietnam
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Kraków, Poland
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Kraków, Poland
Bibliografia
  • 1. APHA 1998. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC. American Public Health Association. ISBN 0875532357, 1325.
  • 2. Baxter, C., Hauer, F.R., Woessner, W.W., 2003. Measuring groundwater–stream water exchange: New techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society 132, 493–502. https://doi.org/10.1577/1548–8659(2003)132<0493:MGWENT>2.0.CO;2
  • 3. Boano, F., Revelli, R., Ridolfi, L., 2010. Effect of streamflow stochasticity on bedform-driven hyporheic exchange. Advances in Water Resources 33, 1367–1374. https://doi.org/10.1016/j.advwatres.2010.03.005
  • 4. Bogdał, A., Kowalik, T., Ostrowski, K., Skowron, P., 2016. Seasonal variability of physicochemical parameters of water quality on length of Uszwica river. J. Ecol. Eng.; 17(1), 161–170; https://doi.org/10.12911/22998993/61206
  • 5. Borden, R.C., Daniel, R.A., LeBrun, L.E., Davis, C.W., 1997. Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer. Water Resour. Res. 33, 1105–1115. https://doi.org/10.1029/97WR00014
  • 6. Borek, Ł., Drymajło, K., 2019. The role and importance of irrigation system for increasing the water resources: the case of the Nida River valley. ASP.FC 18, 19–30. https://doi.org/10.15576/ASP.FC/2019.18.3.19
  • 7. Brunke, M., Gonser, T., 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37, 1–33. https://doi.org/10.1046/j.1365–2427.1997.00143.x
  • 8. Cel, W., Kujawska, J., Wasąg, H., 2017. Impact of hydraulic fracturing on the quality of natural waters. J. Ecol. Eng. 18, 63–68. https://doi.org/10.12911/22998993/67852
  • 9. Conant, B., Cherry, J.A., Gillham, R.W., 2004. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Journal of Contaminant Hydrology 73, 249–279. https://doi.org/10.1016/j.jconhyd.2004.04.001
  • 10. Cook, P.G., Favreau, G., Dighton, J.C., Tickell, S., 2003. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology 277, 74–88. https://doi.org/10.1016/S0022–1694(03)00087–8
  • 11. Costello, M.J., McCarthy, T.K., O’Farrell, M.M., 1984. The stoneflies (Plecoptera) of the Corrib catchment area, Ireland. Annls Limnol. 20, 25–34. https://doi.org/10.1051/limn/1984014
  • 12. Demaku, S., Bajraktari, N., 2019. Physicochemical Analysis of the Water Wells in the Area of Kosovo Energetic Corporation (Obiliq, Kosovo). J. Ecol. Eng. 20, 155–160. https://doi.org/10.12911/22998993/109874
  • 13. Edmunds, W.M., Guendouz, A.H., Mamou, A., Moulla, A., Shand, P., Zouari, K., 2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Applied Geochemistry 18, 805–822. https://doi.org/10.1016/S0883–2927(02)00189–0
  • 14. EPA 1983. Methods for chemical analysis of water and wastes. Washington, DC. United States Environmental Protection Agency, 491.
  • 15. Findlay, S., 1995. Importance of surface-subsurface exchange in stream ecosystems: The hyporheic zone. Limnol. Oceanogr. 40, 159–164. https://doi.org/10.4319/lo.1995.40.1.0159
  • 16. Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall, Englewood Cliffs, N.J.
  • 17. Frei, S., Fleckenstein, J.H., Kollet, S.J., Maxwell, R.M., 2009. Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model. Journal of Hydrology 375, 383–393. https://doi.org/10.1016/j.jhydrol.2009.06.038
  • 18. Guay, C., Nastev, M., Paniconi, C., Sulis, M., 2013. Comparison of two modeling approaches for groundwater-surface water interactions: Comparison of two modeling approaches for gw-sw interactions. Hydrol. Process. 27, 2258–2270. https://doi.org/10.1002/hyp.9323
  • 19. Hakam, O.K., Choukri, A., Moutia, Z., Chouak, A., Cherkaoui, R., Reyss, J.-L., Lferde, M., 2001. Uranium and radium in groundwater and surface water samples in Morocco. Radiation Physics and Chemistry 61, 653–654. https://doi.org/10.1016/S0969–806X(01)00362–0
  • 20. Hendricks, S.P., White, D.S., 1991. Physicochemical Patterns within a Hyporheic Zone of a Northern Michigan River, with Comments on Surface Water Patterns. Can. J. Fish. Aquat. Sci. 48, 1645–1654. https://doi.org/10.1139/f91–195
  • 21. Hutchinson, P.A., Webster, I.T., 1998. Solute Uptake in Aquatic Sediments due to Current-Obstacle Interactions. J. Environ. Eng. 124, 419–426. https://doi.org/10.1061/(ASCE)0733–9372(1998)124:5(419)
  • 22. Hynes, H.B.N., 1983. Groundwater and stream ecology. Hydrobiologia 100, 93–99. https://doi.org/10.1007/BF00027424
  • 23. Isiorho, S.A., Meyer, J.H., 1999. The Effects of Bag Type and Meter Size on Seepage Meter Measurements. Ground Water 37, 411–413. https://doi.org/10.1111/j.1745–6584.1999.tb01119.x
  • 24. Jin, G., Tang, H., Gibbes, B., Li, L., Barry, D.A., 2010. Transport of nonsorbing solutes in a streambed with periodic bedforms. Advances in Water Resources 33, 1402–1416. https://doi.org/10.1016/j.advwatres.2010.09.003
  • 25. Jing, X., Yang, H., Cao, Y., Wang, W., 2014. Identification of indicators of groundwater quality formation process using a zoning model. Journal of Hydrology 514, 30–40. https://doi.org/10.1016/j.jhydrol.2014.03.059
  • 26. Jones, J.P., Sudicky, E.A., McLaren, R.G., 2008. Application of a fully-integrated surface-subsurface flow model at the watershed-scale: A case study: Integrated surface-subsurface flow model. Water Resour. Res. 44. https://doi.org/10.1029/2006WR005603
  • 27. Jutebring Sterte, E., Johansson, E., Sjöberg, Y., Huseby Karlsen, R., Laudon, H., 2018a. Groundwater-surface water interactions across scales in a boreal landscape investigated using a numerical modelling approach. Journal of Hydrology 560, 184–201. https://doi.org/10.1016/j.jhydrol.2018.03.011
  • 28. Kalbus, E., Reinstorf, F., Schirmer, M., 2006. Measuring methods for groundwater – surface water interactions: a review. Hydrol. Earth Syst. Sci. 10, 873–887. https://doi.org/10.5194/hess-10–873–2006
  • 29. Kowalik, T., Bogdał, A., Borek, Ł., Kogut, A., 2015. The effect of treated sewage outflow from a modernized sewage treatment plant on water quality of the Breń River. J. Ecol. Eng. 16, 96–102. https://doi.org/10.12911/22998993/59355
  • 30. Lee, D.R., 1977. A device for measuring seepage flux in lakes and estuaries1. Limnol. Oceanogr. 22, 140–147. https://doi.org/10.4319/lo.1977.22.1.0140
  • 31. Lee, D.R., Cherry, J.A., 1979. A Field Exercise on Groundwater Flow Using Seepage Meters and Minipiezometers. Journal of Geological Education 27, 6–10. https://doi.org/10.5408/0022–1368–27.1.6
  • 32. Łajczak A., 2004. Negative consequences of regulation of a meandering sandy river and proposals tending to diminish flood hazard. Case study of the Nida river, southern Poland. Proceedings of the Ninth International Symposium on River Sedimentation. Yichang, China. Beijing. IAHR, 1773–1783
  • 33. Martinez, J.L., Raiber, M., Cox, M.E., 2015. Assessment of groundwater–surface water interaction using long-term hydrochemical data and isotope hydrology: Headwaters of the Condamine River, Southeast Queensland, Australia. Science of The Total Environment 536, 499–516. https://doi.org/10.1016/j.scitotenv.2015.07.031
  • 34. Möller, P., Rosenthal, E., Geyer, S., Flexer, A., 2007. Chemical evolution of saline waters in the Jordan-Dead Sea transform and in adjoining areas. Int J Earth Sci (Geol Rundsch) 96, 541–566. https://doi.org/10.1007/s00531–006–0111–9
  • 35. Négrel, Ph., Petelet-Giraud, E., Barbier, J., Gautier, E., 2003. Surface water–groundwater interactions in an alluvial plain: Chemical and isotopic systematics. Journal of Hydrology 277, 248–267. https://doi.org/10.1016/S0022–1694(03)00125–2
  • 36. Nowobilska-Luberda, A., 2018. Physicochemical and Bacteriological Status of Surface Waters and Groundwater in the Selected Catchment Area of the Dunajec River Basin. J. Ecol. Eng. 19, 162–169. https://doi.org/10.12911/22998993/86329
  • 37. Oyarzún, R., Barrera, F., Salazar, P., Maturana, H., Oyarzún, J., Aguirre, E., Alvarez, P., Jourde, H., Kretschmer, N., 2014. Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrogeol J 22, 1857–1873. https://doi.org/10.1007/s10040–014–1170–9
  • 38. Phan, C.N., Strużyński, A., Kowalik, T., 2023. Monthly changes in physicochemical parameters of the groundwater in Nida valley, Poland (case study). Journal of water and Land development 220–234. https://doi.org/10.24425/jwld.2023.143763
  • 39. Pitkin, S.E., Cherry, J.A., Ingleton, R.A., Broholm, M., 1999. Field Demonstrations Using the Waterloo Ground Water Profiler. Ground Water Monit. Remediat 19, 122–131. https://doi.org/10.1111/j.1745–6592.1999.tb00213.x
  • 40. Qian, H., Li, P., 2011. Hydrochemical Characteristics of Groundwater in Yinchuan Plain and Their Control Factors. Asian J. Chem. 23, 2927–2938.
  • 41. Savant, S.A., Reible, D.D., Thibodeaux, L.J., 1987. Convective transport within stable river sediments. Water Resour. Res. 23, 1763–1768. https://doi.org/10.1029/WR023i009p01763
  • 42. Strużyński, A., Książek, L., Bartnik, W., Radecki-Pawlik, A., Plesiński, K., Florek, J., Wyrębek, M., Strutyński, M., 2015. Wetlands in River Valleys as an Effect of Fluvial Processes and Anthropopression, in: Ignar, S., Grygoruk, M. (Eds.), Wetlands and Water Framework Directive, Geo- Planet: Earth and Planetary Sciences. Springer International Publishing, Cham, 69–90. https://doi.org/10.1007/978–3-319–13764–3_5
  • 43. Thibodeaux, L.J., Boyle, J.D., 1987. Bedform-generated convective transport in bottom sediment. Nature 325, 341–343. https://doi.org/10.1038/325341a0
  • 44. Unland, N.P., Cartwright, I., Andersen, M.S., Rau, G.C., Reed, J., Gilfedder, B.S., Atkinson, A.P., Hofmann, H., 2013. Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach. Hydrol. Earth Syst. Sci. 17, 3437–3453. https://doi.org/10.5194/hess-17–3437–2013
  • 45. Valett, H.M., Fisher, S.G., Stanley, E.H., 1990. Physical and Chemical Characteristics of the Hyporheic Zone of a Sonoran Desert Stream. Journal of the North American Benthological Society 9, 201–215. https://doi.org/10.2307/1467584
  • 46. Valett, H.M., Fisher, S.G., Grimm, N.B., Camill, P., 1994. Hydrologic exchange and ecological stability of a desert stream ecosystem, Ecology, 75, 548–560, https://doi.org/10.2307/1939557
  • 47. Vrana, B., Allan, I.J., Greenwood, R., Mills, G.A., Dominiak, E., Svensson, K., Knutsson, J., Morrison, G., 2005. Passive sampling techniques for monitoring pollutants in water. TrAC Trends in Analytical Chemistry 24, 845–868. https://doi.org/10.1016/j.trac.2005.06.006
  • 48. Wang, P., Yu, J., Zhang, Y., Liu, C., 2013. Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China. Journal of Hydrology 476, 72–86. https://doi.org/10.1016/j.jhydrol.2012.10.049
  • 49. Wang, W., Wang, Zhan, Hou, R., Guan, L., Dang, Y., Zhang, Z., Wang, H., Duan, L., Wang, Zhoufeng, 2018. Modes, hydrodynamic processes and ecological impacts exerted by river–groundwater transformation in Junggar Basin, China. Hydrogeol J 26, 1547–1557. https://doi.org/10.1007/s10040–018–1784–4
  • 50. Wałęga, A., Kowalik, T., Bogdał, A., 2016. Estimating the Occurrence of Trends in Selected Elements of a Small Sub-Mountain Catchment Hydrological Regime. Polish Journal of Environmental Studies, 25 (5), 2151–2159. https://doi.org/10.15244/pjoes/62960
  • 51. Woessner, W.W., 2000. Stream and Fluvial Plain Ground Water Interactions: Rescaling Hydrogeologic Thought. Ground Water 38, 423–429. https://doi.org/10.1111/j.1745–6584.2000.tb00228.x
  • 52. Woessner, W.W., Sullivan, K.E., 1984. Results of Seepage Meter and Mini-Piezometer study, Lake Mead, Nevada. Ground Water 22, 561–568. https://doi.org/10.1111/j.1745–6584.1984.tb01425.x
  • 53. Wojak, S., Strużyński, A., Wyrębek, M., 2023. Analysis of changes in hydraulic parameters in a lowland river using numerical modeling. ASP.FC 22, 3–17. https://doi.org/10.15576/ASP.FC/2023.22.1.3
  • 54. Xu, W., Su, X., Dai, Z., Yang, F., Zhu, P., Huang, Y., 2017. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China. Hydrogeol J 25, 2015–2029. https://doi.org/10.1007/s10040–017–1606–0
  • 55. Zhu, M., Wang, S., Kong, X., Zheng, W., Feng, W., Zhang, X., Yuan, R., Song, X., Sprenger, M., 2019. Interaction of Surface Water and Groundwater Influenced by Groundwater Over-Extraction, Waste Water Discharge and Water Transfer in Xiong’an New Area, China. Water 11, 539. https://doi.org/10.3390/w11030539
  • 56. Żelazo J., 1993. Współczesne poglądy na regulację małych rzek nizinnych: Ochrona przyrody i środowiska w dolinach nizinnych rzek Polski [The recent views on the small lowland river training. In: Nature and environment conservation in the lowland river valleys in Poland]. Ed. L. Tomiałojć. Kraków. IOP PAN, 45–154.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c52235eb-97f4-4c67-8165-1e2e928fcbd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.