PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the shape accuracy of parts fabricated by means of FLM process using FEM simulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The prediction of component properties from the Additive manufacturing (AM) process poses a challenge. Therefore, this paper presents the development of a novel machine data (G-Code) based procedure as well as its programming implementation of a process simulation in ANSYS Mechanical for the fused layer modelling (FLM) process. For this purpose, an investigation of additively produced components with varying parameters made of polylactic acid (PLA) is carried out and simulated by means of the developed method. Application of the developed method makes it possible to predict the thermally induced distortion of PLA-Parts based on the machine data from the FLM process before production.
Rocznik
Strony
114--127
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Institute for Machine Tools (IfW), University of Stuttgart, Stuttgart, Germany
  • Institute for Machine Tools (IfW), University of Stuttgart, Stuttgart, Germany
  • Institute for Machine Tools (IfW), University of Stuttgart, Stuttgart, Germany
autor
  • Institute for Machine Tools (IfW), University of Stuttgart, Stuttgart, Germany
  • Institute for Machine Tools (IfW), University of Stuttgart, Stuttgart, Germany
Bibliografia
  • [1] KRUTH J.P., LEU M.C., NAKAGAWA T., 1998, Progress in Additive Manufacturing and Rapid Prototyping, Annals of the CIRP, 47/2, 525–540.
  • [2] MACDONALD E., WICKER R., 2016, Multiprocess 3D printing for increasing component functionality, Science, 353 (6307), https://doi.org/10.1126/science.aaf2093.
  • [3] CHEN T., FRITZ S., SHEA K., 2015, Design for mass customization using additive manufacture: case-study of a balloon-powered car, Proceedings of the 20th International Conference on Engineering Design (ICED15), Milan, Italy.
  • [4] THOMPSON M.K., MORONI G., VANEKER T., FADEL G., CAMPBELL R.I., GIBSON I., BERNARD A., SCHULZ J., GRAF P., AHUJA B., MARTINA F., 2016, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Annals – Manufacturing Technology, 65/2, 737–760.
  • [5] SCHMIDT M., MERKLEIN M., BOURELL D., DIMITROV D., HAUSOTTE T., WEGENER K., OVERMEYER L., VOLLERTSEN F., LEVY G.N., 2017, Laser based additive manufacturing in industry and academia, CIRP Annals – Manufacturing Technology, 66/2, 561–583.
  • [6] VEREIN DEUTSCHER INGENIEURE (VDI): VDI 3405 (Additive Fertigungsverfahren. Grundlagen, Begriffe, Verfahrensbeschreibungen).
  • [7] GEBHARDT A., 2016, Generative Fertigungsverfahren. Additive Manufacturing und 3D Drucken für Prototyping – Tooling – Produktion, Carl Hanser Verlag, München.
  • [8] ZHANG S., 2017, Numerical evaluation of ABS parts fabricated by fused deposition modeling and vapor smoothing, Advances in Science, Technology and Engineering Systems Journal, 2/6, 157–161 https://doi.org/10.25046/aj020620.
  • [9] MORONI G., PETRO S., POLINI W., 2017, Geometrical product specification and verification in additive manufacturing, CIRP Annals – Manufacturing Technology, 66/1, 157–160.
  • [10] DANTAN J.Y., HUANG Z., GOKA E., HOMRI L., ETIENNE A., BONNET N., RIVETTE M., 2017, Geometrical variations management for additive manufactured product, CIRP Annals – Manufacturing Technology, 66/1, 161–164.
  • [11] ZHU Z., ANWER N., HUANG Q., MATHIEU L., 2018, Machine learning in tolerancing for additive manufacturing, CIRP Annals – Manufacturing Technology, 67/1, 157–160.
  • [12] GORSKI F., WICHNIAREK R., KUCZKO W., ANDRZEJEWSKI J., 2015, Experimental determination of critical orientation of ABS parts manufactured using fused deposition modelling technology, Journal of Machine Engineering, 15/4, 121–132.
  • [13] GORSKI F., WICHNIAREK R., KUCZKO W., 2014, Influence of filling type on strength of parts manufactured by fused deposition modelling, Journal of Machine Engineering, 14/3, 113–125.
  • [14] ZÄH M., 2013, Wirtschaftliche Fertigung mit Rapid-Technologien. Anwender-Leitfaden zur Auswahl geeigneter Verfahren, Carl Hanser Verlag, München.
  • [15] KUZNETSOV V.E., SOLONIN A.N., URZHUMTSEV O.D., SCHILLING R., TAVITOV A.G., 2018, Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process, Polymers 2018, 10/313, https://doi.org/10.3390/polym10030313.
  • [16] BENWOOD C., ANSTEY A., ANDRZEJEWSKI J., MISRA M., MOHANTY A.K., 2018, Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly (Lactic Acid), ACS Omega, 3/4, 4400−4411, https://doi.org/10.1021/acsomega.8b00129.
  • [17] KELLER N., 2017, Verzugsminimierung bei selektiven Laserschmelzverfahren durch Multi-Skalen-Simulation, Dissertation, University of Bremen.
  • [18] https://www.ansys.com/de-de/products/structures/additive-manufacturing Additive Manufacturing Simulation, Accessed 12 December 2018.
  • [19] https://www.autodesk.de/products/netfabb/overview Software für additive Fertigung und Konstruktion, Accessed 12 December 2018.
  • [20] https://www.simufact.de/simufact-additive.html, Simufact Additive, Accessed 12 December 2018.
  • [21] https://additive.works, Additive Manufacturing Software Solution of Tomorrow, Accessed 12 December 2018.
  • [22] https://www.esi-group.com/de/software-loesungen/virtual-manufacturing/additive-fertigung, Mit Simulation metallische additive Fertigungsprozesse modellieren, Accessed 12 December 2018.
  • [23] https://www.ge.com/additive, The Anything Factory, Accessed 12 December 2018.
  • [24] https://alphastarcorp.com/additive-manufacturing, Additive Manufacturing, Accessed 12 December 2018.
  • [25] https://www.e-xstream.com/node/2856, Additive Manufacturing, Accessed 12 December 2018.
  • [26] TOFAIL S.A., KOUMOULOS E.P., BANDYOPADHYAY A., BOSE S., O’DONOGHUE L., CHARITIDIS C., 2017, Additive manufacturing: Scientific and technological challenges, market uptake and opportunities, Materials today 21/1, 22–37, https://doi.org/10.1016/j.mattod.2017.07.001.
  • [27] FORD S., DESPEISSE M., 2016, Additive manufacturing and sustainability: an exploratory study of the advan-tages and challenges, Journal of Cleaner Production, 137, 1573–1587 https://doi.org/10.1016/j.mattod. 2017.07.001.
  • [28] YANG C., TIAN X., LI D., CAO Y., ZHAO F., SHI C., 2017, Influence of Thermal Processing Conditions in 3D Printing on the Crystallinity and Mechanical Properties of PEEK Material, J. Mater. Process. Technol. 248, 1−7, https://doi.org/10.1016/j.jmatprotec.2017.04.027.
  • [29] Deutsches Institut für Normung e.V. (DIN): DIN EN ISO 527-2 (Kunststoffe – Bestimmung der Zugeigen schaften), Teil 2, 2012.
  • [30] FARAH S., ANDERSON D.G., LANGER R., 2016, Physical and mechanical properties of PLA, and their functions in widespread applications – A comprehensive review, Advanced Drug Delivery Reviews, 107, 67–392, https://doi.org/10.1016/j.addr.2016.06.012.
  • [31] MARIAN K., RIPPY M.K., BARON S., ROSENTHAL M., BRENT A., 2018, Evaluation of absorbable PLA nasal implants in an ovine model: Biocompatibility of a PLA nasal implant, Laryngoscope Investigative Otolaryngology, 3/3, 156–161, https://doi.org/ 10.1002/lio2.166.
  • [32] MÖHRING H.-C., STEHLE T., BECKER D., EISSELER R., 2018, Qualität von additive hergestellten PLA-Bauteilen, Werkstattstechnik online, 108/6, 419–425.
  • [33] SCHWARZL F., 2013, Polymermechanik: Struktur und mechanisches Verhalten von Polymeren, Springer-Verlag, Heidelberg.
  • [34] MARTIENSSEN W., WARLIMONT H., 2005, Handbook of Condensed Matter and Materials Data, Springer-Verlag, Heidelberg
  • [35] LI Y., GAO S., DONG R., DING X., DUAN X., 2018, Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling, Journal of Materials Engineering and Performance, 27/2, 492–500, http://dx.doi.org/10.1007/s11665-017-3065-0.
  • [36] SHKUNDALOVA O., RIMKUS A., GRIBNIAK V., 2018, Structural Application of 3D Printing Technologies: Mechanical Properties of Printed Polymeric Materials, Science – Future of Lithuania, 10 https://doi.org/ 10.3846/mla.2018.6250.
  • [37] CHACÓN J. M., CAMINERO M.A., GARCÍA-PLAZA E., NÚÑEZ P.J., 2017, Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Materials & Design, 124, 143-157, http://dx.doi.org/10.1016/j.matdes.2017.03.065.
  • [38] ULLU E., KORKMAZ E., YAY K., OZDOGANLAR O.B., KARA L.B., 2015, Enhancing the structural performance of additively manufactured objects through build orientation optimization, J. Mech. Des. 137/11, 111410, MD-15-1175, https://doi.org/ 10.1115/1.4030998.
  • [39] LIU X., LI S., LIU Z., ZHENG X., CHEN X., WANG Z., 2015, An investigation on distortion of PLA thin-plate part in the FDM process, Int. J. Adv. Manuf. Technol., 79, 1117–1126, https://doi.org/10.1007/s00170-015-6893-9.
  • [40] VALERGA A.P., BATISTA M., SALGUERO J., GIROT F., 2018, Influence of PLA Filament Conditions on Characteristics of FDM Parts, Materials 11:1322, https://doi.org/ 10.3390/ma11081322.
  • [41] Verein Deutscher Ingenieure e.V., 1994, VDI-Wärmeatlas. Berechnungsblätter für den Wärmeübergang, VDI-Verlag, Düsseldorf.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c52177cd-9cca-4de2-a9a0-5c6bd5727bda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.