Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A mini review of the topic of deformation bands is presented in the paper. The concept of deformation bands is defined and their impact on the flow of fluids in porous sedimentary rocks is determined. Deformation bands are mm-thick low-displacement deformation zones which have intensified cohesion and lower permeability compared with ordinary fractures. This term was introduced in 1968 in material science, ten years later it appeared in the geological context. This microstructures can occur as barriers or migration pathways for hydrocarbons. Their role depends mainly on microstructural features, and they are also considered in reservoir modeling. The occurrence of deformation bands in Poland is also outlined and discussed - they have been described in Western Outer Carpathians (Magura and Silesia nappes).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
15--21
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
- AGH University of Krakow, Faculty of Drilling, Oil & Gas
Bibliografia
- [1] Fossen H., Schultz R.A., Shipton Z. K., Mair K.: Deformation bands in sandstone: A review. Journal of the Geological Society, vol. 164, 2007, pp. 755–769. https://doi.org/10.1144/0016-76492006-036
- [2] Fossen H.: Structural Geology. Cambridge University Press, Cambridge, United Kingdom, 2016.
- [3] Wennberg P.O., Casini G., Jahanpanah A., Lapponi F., Ineson J., Graham Wall B., Gillespie P.: Deformation bands in chalk, examples from the Shetland Group of the Oseberg Field, North Sea, Norway. Journal of Structural Geology, vol. 56, 2013, pp. 103–117. https://doi.org/10.1016/j.jsg.2013.09.005
- [4] Cilona A., Baud P., Tondi E., Agosta F., Vinciguerra S., Rustichelli A., Spiers C.J.: Deformation bands in porous carbonate grainstones: Field and laboratory observations. Journal of Structural Geology, vol. 45, 2012, pp. 137–157. https://doi.org/10.1016/j.jsg.2012.04.012
- [5] Rotevatn A., Thorsheim E., Bastesen E., Fossmark H.S.S., Torabi A., Sælen G.: Sequential growth of deformation bands in carbonate grainstones in the hanging wall of an active growth fault: Implications for deformation mechanisms in different tectonic regimes. Journal of Structural Geology, vol. 90, 2016, pp. 27–47. https://doi.org/10.1016/j.jsg.2016.07.003
- [6] Antonellini M., Aydin A.: Effect of faulting on fluid flow in porous sandstones: Geometry and spatial distribution. AAPG Bulletin, vol. 79, 1995, pp. 642–671. https://doi.org/10.1306/8D2B1B60-171E-11D7-8645000102C1865D
- [7] Antonellini M., Aydin A.: Effect of faulting on fluid flow in porous sandstones: petrophysical properties. AAPG Bulletin, vol. 78, 1994, pp. 355–377. https://doi.org/10.1306/BDFF90AA-1718-11D7-8645000102C1865D
- [8] Antonellini M., Aydin A., Orr L.: Outcrop-Aided Characterization of a Faulted Hydrocarbon Reservoir: Arroyo Grande Oil Field, California, USA. In: Haneberg W.C., Mozley P.S., Moore C.J., Goodwin L.B. (eds), Faults and Subsurface Fluid Flow in the Shallow Crust. Geophysical Monograph Series, vol. 113, American Geophysical Union, Washington 1999, pp. 7–26. https://doi.org/10.1029/GM113p0007
- [9] Beach A., Brown J.L., Welbon A.I., Mccallum J.E., Brockbank P., Knott S.: Characteristics of fault zones in sandstones from NW England: application to fault transmissibility. In: Meadows N.S., Trueblood S.P., Hardman M., Cowan G. (eds), Petroleum Geology of the Irish Sea and Adjacent Areas. Geological Society, Special Publications, vol. 124, The Geological Society, London 1997, pp. 315–324. https://doi.org/10.1144/GSL.SP.1997.124.01.19
- [10] Fossen H., Bale A.: Deformation bands and their influence on fluid flow. AAPG Bulletin, vol. 91, no. 12, 2007, pp. 1685–1700. https://doi.org/10.1306/07300706146
- [11] Gabrielsen R.H., Koestler A.G.: Description and structural implications of fractures in late Jurassic sandstones of the Troll Field, northern North Sea. Norsk Geologisk Tidsskrift, vol. 67, 1987, pp. 371–381.
- [12] Gibson R.G.: Physical character and fluid-flow properties of sandstone derived fault zones. In: Coward M.P., Johnson H., Daltaban T.S. (eds), Structural Geology in Reservoir Characterization. Geological Society, Special Publications, vol. 127, The Geological Society, London 1998, pp. 83–97.
- [13] Hesthammer J., Fossen H.: Uncertainties associated with fault sealing analysis. Petroleum Geoscience, vol. 6, 2000, pp. 37–45. https://doi.org/10.1144/petgeo.6.1.37
- [14] Heynekamp M.R., Goodwin L.B., Mozley P.S, Haneberg W.C.: Controls on fault zone architecture in poorly lithified sediments, Rio Grande Rift, New Mexico: Implications for fault zone permeability and fluid flow. In: Haneberg W.C., Mozley P.S., Moore C.J., Goodwin L.B. (eds), Faults and Subsurface Fluid Flow in the Shallow Crust. Geophysical Monograph Series, vol. 113, American Geophysical Union, vol. 113, Washington 1999, pp. 27–49. https://doi.org/10.1029/GM113p0027.
- [15] Jamison W.R., Stearns D.W.: Tectonic deformation of Wingate Sandstone, Colorado National Monument. AAPG Bulletin, vol. 66, 1982, pp. 2584–2608. https://doi.org/10.1306/03B5AC7D-16D1-11D7-8645000102C1865D
- [16] Knipe R.J., Fisher Q.J., Clennell M.R. et al.: Fault seal analysis: successful methodologies, application and future directions. In: Møller Pedersen P., Koestler A.G. (eds), Hydrocarbon Seals: Importance for Exploration and Production. Norwegian Petroleum Society Special Publication, vol. 7, Elsevier, Amsterdam 1997, pp. 15–40. https://doi.org/10.1016/S0928-8937(97)80004-5.
- [17] Lothe A.E., Gabrielsen R.H., Bjørnevoll Hagen N., Larsen B.T.: An experimental study of the texture of deformation bands: effects on the porosity and permeability of sandstones. Petroleum Geoscience, vol. 8, 2002, pp. 195–207. https://doi.org/10.1144/petgeo.8.3.195.
- [18] Parnell J., Watt G.R., Middleton D., Kelly J., Baron M.: Deformation band control on hydrocarbon migration. Journal of Sedimentary Research, vol. 74, no. 4, 2004, pp. 552–560. https://doi.org/10.1306/121703740552.
- [19] Pittman E.D.: Effect of Fault-Related Granulation on Porosity and Permeability of Quartz Sandstones, Simpson Group (Ordovician), Oklahoma. AAPG Bulletin, vol. 65, no. 11, 1981, pp. 238–2387. https://doi.org/10.1306/03B5999F-16D1-11D7-8645000102C1865D.
- [20] Rotevatn A., Sandve T.H., Keilegavlen E., Kolyukhin D., Fossen H.: Deformation bands and their impact on fluid flow in sandstone reservoirs: the role of natural thickness variations. Geofluids, vol. 13, iss. 3, 2013, pp. 359–371. https://doi.org/10.1111/gfl.12030.
- [21] Sample J.C., Woods S., Bender E., Loveall M.: Relationship between deformation bands and petroleum migration in an exhumed reservoir rock, Los Angeles Basin, California, USA. Geofluids, vol. 6, iss. 2, 2006, pp. 105–112. https://doi.org/10.1111/j.1468-8123.2005.00131.x.
- [22] Shipton Z.K., Evans J.P., Robeson K., Forster C.B., Snelgrove S.: Structural heterogeneity and permeability in faulted eolian sandstone: implications for subsurface modelling of faults. AAPG Bulletin, vol. 86, no. 5, 2002, pp. 863–883. https://doi.org/10.1306/61EEDBC0-173E-11D7-8645000102C1865D.
- [23] Shipton Z.K., Evans J.P., Thompson L.B.: The geometry and thickness of deformation-band fault core and its influence on sealing characteristics of deformation-band fault zones. In: Sorkhabi R., Tusuji Y. (eds), Faults, Fluid Flow, And Petroleum Traps. AAPG Memoir, vol. 85, American Association of Petroleum Geologists, Tulsa, Oklahoma 2005, pp. 181–195.
- [24] Taylor W.L., Pollard D.D.: Estimation of in situ permeability of deformation bands in porous sandstone, Valley of Fire, Nevada. Water Resources Research, vol. 36, no. 9, 2000, pp. 2595–2606. https://doi.org/10.1029/2000WR900120.
- [25] Zhang H.: Fluid flow through deformation band. Master Theses, no. 7577, 2016. https://scholarsmine.mst.edu/masters_theses/7577.
- [26] Brown N., Duckett R.A., Ward I.M.: Deformation bands in polyethylene terephtalate. Journal of Physics D: Applied Physics, vol. 1, no. 10, 1968, pp. 1369–1379. https://doi.org/10.1088/0022-3727/1/10/317.
- [27] Aydin A.: Small faults formed as deformation bands in sandstone. Pure and Applied Geophysics, vol. 116, 1978, pp. 913–930. https://doi.org/10.1007/BF00876546.
- [28] Aydin A., Johnson A.M.: Development of faults as zones of deformation bands and as slip surfaces in sandstones. Pure and Applied Geophysics, vol. 116, 1978, pp. 913–930. https://doi.org/10.1007/BF00876547.
- [29] Antonellini M.A., Aydin A., Pollard D.D.: Microstructure of deformation bands in porous sandstones at Arches National Park, Utah. Journal of Structural Geology, vol. 16, iss. 7, 1994, pp. 941–959. https://doi.org/10.1016/0191-8141(94)90077-9.
- [30] Ballas G., Fossen H., Soliva R.: Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. Journal of Structural Geology, vol. 76, 2015, pp. 1–21. https://doi.org/10.1016/j.jsg.2015.03.013.
- [31] Exner U., Kaiser J., Gier S.: Deformation bands evolving from dilation to cementation bands in a hydrocarbon reservoir (Vienna Basin, Austria). Marine and Petroleum Geology, vol. 43, 2013, pp. 504–515. https://doi.org/10.1016/j.marpetgeo.2012.10.001.
- [32] Del Sole L., Antonellini M., Soliva R., Ballas G., Balsamo F., Viola G.: Structural control on fluid flow and shallow diagenesis: insights from calcite cementation along deformation bands in porous sandstones. Solid Earth, vol. 11,2020, pp. 2169–2195, https://doi.org/10.5194/se-11-2169-2020.
- [33] Tondi E., Antonellini M., Aydin A., Marchegiani L., Cello G.: The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy. Journal of Structural Geology, vol. 28, iss. 3, 2006, pp. 376–391. https://doi.org/10.1016/j.jsg.2005.12.001.
- [34] Świerczewska A., Tokarski A.K.: Deformation bands and the history of folding in the Magura nappe, Western Outer Carpathians (Poland). Tectonophysics, vol. 297, iss. 1–4, 1998, pp. 73–90. https://doi.org/10.1016/S0040-1951(98)00164-4.
- [35] Haczewski G., Kukulak J., Bąk K.: Budowa geologiczna i rzeźba Bieszczadzkiego Parku Narodowego. Wydawnictwo Naukowe Akademii Pedagogicznej, Kraków 2007.
- [36] Solecki M.: Rola mikrostruktur tektonicznych w zapisie migracji węglowodorów w skałach płaszczowiny śląskiej w dolinie potoku Wołosatego (Bieszczady). Master thesis, KSE WGGiOŚ AGH Archive, Kraków 2012.
- [37] Matthäi S.K., Aydin A., Pollard D.D., Roberts S.G.: Numerical simulation of departures from radial drawdown in a faulted sandstone reservoir with joints and formation bands. In: Jones G., Fisher Q.J., Knipe R.J. (eds), Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs. Geological Society, Special Publications, vol. 147, The Geological Society, London 1998, pp. 157–191. https://doi.org/10.1144/GSL.SP.1998.147.01.11.
- [38] Walsh J.J., Watterson J., Health A.E., Childs C.: Representation and scaling of faults in fluid flow models. Petroleum Geoscience, vol. 4, 1998, pp. 241–251. https://doi.org/10.1144/petgeo.4.3.241.
- [39] Harper T.R., Moftah I.: Skin Effect and Completion Options in the Ras Budran Reservoir. In: Middle East Oil Technical Conference and Exhibition: March 11–14, 1985, Bahrain, SPE-13708-MS, Society of Petroleum Engineers, 1985, pp. 211–226.
- [40] Sternlof K.R., Chapin J.R, Pollard D.D., Durlofsky L.J.: Permeability effects of deformation bands arrays in sandstone. AAPG Bulletin, vol. 88, no. 9, 2004, pp. 1315–1329.
- [41] Qu D., Tveranger J.: Incorporation of deformation band fault damage zones in reservoir models. AAPG Bulletin, vol. 100, no. 3, 2016, pp. 423–443. https://doi.org/10.1306/12111514166.
- [42] Aleksandrowski P.: Step-like tectonic lineation in the Magura flysch (Western Outer Carpathians). Annales Societatis Geologorum Poloniae, vol. 50, no. 3–4, 1980, pp. 329–339.
- [43] Świerczewska A., Tokarski A.K.: Deformation development of a flysch sandstone, Outer Carpathians (Poland): from water escape structures to brittle faults. In: Abstracts: 30th International Geological Congress, Beijing, China, 4–14 August 1996. Vol. 2, 1996, p. 269.
- [44] Tokarski A.K., Świerczewska A., Banaś M.: Deformation bands and early folding in Lower Eocene flysch sandstone, Outer Carpathians, Poland. In: Rossmanith H.-P. (ed.), Mechanics of Jointed and Faulted Rock. Balkema, Rotterdam 1995, pp. 323–327.
- [45] Nescieruk P., Wójcik A., Malata T., Aleksandrowski P.: Tektoniczne struktury deformacyjne w iłach krakowieckich sarmatu w Wylewie k. Sieniawy (zapadlisko przedkarpackie): świadectwo młodej przesuwczej aktywności podłoża miocenu. Przegląd Geologiczny, vol. 55, no. 8, 2007, pp. 690–698.
- [46] Strzelecki P.J., Solecki M.L.: Wpływ mikrotekstury i procesu kwasowania skały na jej parametry zbiornikowe: studium przypadku piaskowców krośnieńskich z rejonu Dwernika, Bieszczady [The influence of rock microtexture and acidizing on reservoir properties: a case study of the Krosno Sandstones from Dwernik, Bieszczady Mts.]. Przegląd Geologiczny, vol. 69, nr 7, 2021, pp. 454–457. https://doi.org/10.7306/2021.30.
- [47] Strzelecki P.J., Świerczewska A.: Wpływ więźby skały na mechanizm deformacji: studium przypadku wstęg deformacyjnych w piaskowcach otryckich (Bieszczady) [The impact of rock fabric on deformation: a case study of deformation bands in the Otryt sandstone (Bieszczady Mountains, SE Poland)]. Przegląd Geologiczny, vol. 71, 2023, pp. 231–234. https://doi.org/10.7306/2023.20
- [48] Strzelecki P., Świerczewska A.: Pure compaction bands in the naturally deformed flysch sandstones of the Silesian Nappe (SE Poland): early markers of tectonic shortening. EGU General Assembly, 2023, EGU23-14083, https://doi.org/10.5194/egusphere-egu23-14083
- [49] Strzelecki P.J., Świerczewska A., Tokarski A.K.: Structural Evolution of the Eastern Part of the Silesian Nappe Recorded in Deformation Bands, Polish Segment of the Outer Carpathians. Geology, Geophysics & Environment, vol. 44, no. 1, 2018, p. 196.
- [50] Strzelecki P.J., Świerczewska A., Tokarski A.K.: Do Deformation Bands Record the Early Onset of Backthrusting?: Insights from the Inner Part of the Silesian Nappe (outer Western Carpathians, Poland). In: Hrdličková K., Daňková L. (eds), CETEG 2019: 17th Meeting of the Central European Tectonic Groups: Rozdrojovice, 24–27 April, 2019: Abstract Volume. Czech Geological Survey, Prague 2019, pp. 79–80.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c51e4463-2a3e-49cc-a5a8-ba88c6254781