PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of residual stress in air plasma sprayed MWCNT-reinforced 8YSZ-alumina composite coating

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal barrier coating (TBC) with Al2O3 and 8YSZ as topcoat constituents has been developed. The commercially available 8YSZ (80% wt.), Al2O3 (17 and 19% wt.) and multiwall carbon nanotubes (MWCNT) (3% and 1% wt.) were plasma sprayed to produce composite coatings. A stress relaxation technique using a slow-speed diamond cutter has been used to relax the strain and determine the through-thickness residual stress in the coatings. A 3D finite element model was developed, the model was experimentally validated, and the model was used to establish a relationship between applied stress and relaxed strain. The addition of alumina increased the compressive residual stress on the surface of the coating by 42%, the addition of 1% MWCNT had a negligible effect on the residual stress on the coating surface. The further addition of MWCNT (3% wt.) resulted in tensile residual stress in the coating as a result of MWCNT agglomeration.
Rocznik
Strony
1--15
Opis fizyczny
Bibliogr. 44 poz., fot., rys., wykr.
Twórcy
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
autor
  • Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
  • School of Mechanical Science, Indian Institute of Technology Bhubaneswar, Odisha 751013, India
Bibliografia
  • [1] Guo X, Fan Y, Gao W, Tang R, Chen K, Shen Z, Zhang L. Corrosion resistance of candidate cladding materials for supercritical water reactor. Ann Nucl Energy. 2019;127:351–63. https ://doi.org/10.1016/j.anuce ne.2018.12.007.
  • [2] Pandey C, Mahapatra MM, Kumar P, Saini N. Some studies on P91 steel and their weldments. J Alloys Compd. 2018;743:332–64. https ://doi.org/10.1016/j.jallc om.2018.01.120.
  • [3] Davis JR. Thermal Spray Technology. USA: ASM international; 2004.
  • [4] Pawlowski L, Fauchais P. Thermal transport properties of thermally sprayed coatings. Int Mater Rev. 1992;37:271–89. https ://doi.org/10.1179/imr.1992.37.1.271.
  • [5] Hardwicke CU, Lau YC. Advances in thermal spray coatings for gas turbines and energy generation: a review. J Therm Spray Technol. 2013;22:564–76. https ://doi.org/10.1007/s1166 6-013-9904-0.
  • [6] Thakare JG, Pandey C, Mahapatra MM, Mulik RS. Thermal barrier coatings-a state of the art review. Met Mater Int. 2020. https ://doi.org/10.1007/s1254 0-020-00705 -w.
  • [7] Arif AFM, Al-athel KS, Fahd K, Arabia S. Residual stresses in thermal spray coating. Elsevier. 2017. https ://doi.org/10.1016/B978-0-12-80358 1-8.09199 -2.
  • [8] Teixeira V, Andritschky M, Fischer W, Buchkremer HP, Stöver D. Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings. Surf Coatings Technol. 1999;121:103–11. https ://doi.org/10.1016/S0257-8972(99)00341 -2.
  • [9] Yang YC, Chang E. Measurements of residual stresses in plasma-sprayed hydroxyapatite coatings on titanium alloy. Surf Coatings Technol. 2005;190:122–31. https ://doi.org/10.1016/j.surfcoat.2004.02.038.
  • [10] Santana YY, Renault PO, Sebastiani M, La Barbera JG, Lesage J, Bemporad E. Characterization and residual stresses of WC – Co thermally sprayed coatings. Surf Coat Technol. 2008;202:4560–5. https ://doi.org/10.1016/j.surfc oat.2008.04.042.
  • [11] Santana YY, La Barbera-Sosa JG, Staia MH, Lesage J, Puchi-Cabrera ES, Chicot D, Bemporad E. Measurement of residual stress in thermal spray coatings by the incremental hole drilling method. Surf Coatings Technol. 2006;201:2092–8. https ://doi.org/10.1016/j.surfc oat.2006.04.056.
  • [12] Mauer G, Vaen R, Stöver D. Plasma and particle temperature measurements in thermal spray: approaches and applications. J Therm Spray Technol. 2011;20:391–406. https ://doi.org/10.1007/s1166 6-010-9603-z.
  • [13] Abadias G, Chason E, Keckes J, Sebastiani M, Thompson GB, Barthel E, Doll GL, Murray CE, Stoessel CH, Martinu L. Review Article: Stress in thin films and coatings: Current status, chal-lenges, and prospects. J Vac Sci Technol. 2018;36:020801. https://doi.org/10.1116/1.50117 90.
  • [14] Hayase T, Waki H, Adachi K. residual stress change in thermal barrier coating due to thermal exposure evaluated by curvature method. J Therm Spray Technol. 2020. https ://doi.org/10.1007/s1166 6-020-01032 -7.
  • [15] Vijigen DJH. R O E Mechanical measurement of residual stress in thin PVD films. Thin Solid Films. 1995;270:264–9.
  • [16] Ahmed R, Faisal NH, Paradowska AM, Fitzpatrick ME. Residual strain and fracture response of Al 2O 3 coatings deposited via APS and HVOF techniques. J Therm Spray Technol. 2012;21:23–40. https ://doi.org/10.1007/s1166 6-011-9680-7.
  • [17] Oladijo OP, Venter AM, Cornish LA, Sacks N. X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates. Surf Coatings Technol. 2012;206:4725–9. https ://doi.org/10.1016/j.surfc oat.2012.01.044.
  • [18] Carlsson S, Larsson PL. On the determination of residual stress and strain fields by sharp indentation testing Part I: Theoretical and numerical analysis. Acta Mater. 2001;49:2179–91. https ://doi.org/10.1016/S1359 -6454(01)00122 -7.
  • [19] Greying DJ, Rybicki EF, Shadley JR. Through-thickness residual stress evaluations for several industrial thermal spray coatings using a modified. J Therm Spray Technol. 1994;3:379–88.
  • [20] Mutter M, Mauer G, Mücke R, Guillon O, Vaßen R. Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coatings. Surf Coatings Technol. 2017;318:157–69. https ://doi.org/10.1016/j.surfc oat.2016.12.061.
  • [21] Montay G, Cherouat A, Nussair A, Lu J. Residual stresses in coating technology. J Mater Sci Technol. 2004;20:81–4.
  • [22] Kesler O, Finot M. Determination of processing induced stresses and properties of layeres and graded coatings: experimental method and reuslts of plasma sprayed Ni-Al2O3. Acta Mater. 1997;45:5.
  • [23] Song Y, Fang QZ, Wang TJ. Experimental investigation of residual thermal stress in thermal barrier coating (TBC). Key Eng Mater. 2011;2:295–300.
  • [24] Ghasemi R, Shoja-Razavi R, Mozafarinia R, Jamali H. Comparison of microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram Int. 2013;39:8805–13. https ://doi.org/10.1016/j.ceram int.2013.04.068.
  • [25] Thakare JG, Pandey C, Mulik RS, Mahapatra MM. Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceram Int. 2018;44:6980–9. https ://doi.org/10.1016/j.ceram int.2018.01.131.
  • [26] Taskaya S, Gur AK, Orhan A. Joining of Ramor 500 steel by sub-merged welding and its examination of thermal analysis in ansys package program. Therm Sci Eng Prog. 2019;11:84–110. https ://doi.org/10.1016/j.tsep.2019.02.002.
  • [27] Taskaya S, Kaya Gur A, Ozay C. Joining of Ramor 500 Steel with SAW (Submerged Arc Welding) and its Evaluation of Thermome-chanical Analysis in ANSYS Package Software. Therm Sci Eng Prog. 2019;13:100396. https ://doi.org/10.1016/j.tsep.2019.100396.
  • [28] Taraphdar PK, Mahapatra MM, Pradhan AK, Singh PK, Sharma K, Kumar S. Evaluation of through-thickness residual stresses in conventional and narrow grooved stainless steel welds. Proc Inst Mech Eng Part L J Mater Des Appl. 2020. https ://doi.org/10.1177/14644 20720 93035 5.
  • [29] Keshri AK, Agarwal A. Splat morphology of plasma sprayed aluminum oxide reinforced with carbon nanotubes: a comparison between experiments and simulation. Surf Coatings Technol. 2011;206:338–47. https ://doi.org/10.1016/j.surfc oat.2011.07.025.
  • [30] Thakare JG, Mulik RS, Mahapatra MM. Effect of carbon nanotubes and aluminum oxide on the properties of a plasma sprayed thermal barrier coating. Ceram Int. 2018. https ://doi.org/10.1016/j.ceram int.2017.09.196.
  • [31] Thakare JG, Mulik RS, Mahapatra MM. Hot corrosion behavior of plasma sprayed 8YSZ-alumina- CNT composite coating in Na2SO4–60% V2O5 molten salt environment. Ceram Int. 2018. https ://doi.org/10.1016/j.ceram int.2018.08.217.
  • [32] Bose S. High Temperature Coatings. 2007. https ://doi.org/10.1016/B978-0-7506-8252-7.X5000 -8.
  • [33] Kuroda S. The quinching stress in thermal sprayed coating. 1991;200:2–3.
  • [34] Hayashi H, Saitou T, Maruyama N, Inaba H, Kawamura K, Mori M. Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. Solid State Ionics. 2005;176:613–9. https://doi.org/10.1016/j.ssi.2004.08.021.
  • [35] Yang K, Feng J, Zhou X, Tao S. In-situ formed γ-Al 2O 3 nanocrystals repaired and toughened Al 2O 3 coating prepared by plasma spraying. Surf Coatings Technol. 2012;206:3082–7. https ://doi.org/10.1016/j.surfc oat.2011.12.014.
  • [36] Chen WR, Wu X, Marple BR, Nagy DR, Patnaik PC. TGO growth behaviour in TBCs with APS and HVOF bond coats. Surf Coat-ings Technol. 2008;202:2677–83. https ://doi.org/10.1016/j.surfcoat.2007.09.042.
  • [37] Gadow R, Riegert-Escribano MJ, Buchmann M. Residual stress analysis in thermally sprayed layer composites, using the hole milling and drilling method. J Therm Spray Technol. 2005;14:100–8. https ://doi.org/10.1361/10599 63052 2756.
  • [38] Matejicek J, Sampath S, Gilmore D, Neiser R. In situ measurement of residual stresses and elastic moduli in thermal sprayed coatings part 2: processing effects on properties of Mo coatings. Acta Mater. 2003;51:873–85. https ://doi.org/10.1016/S1359-6454(02)00477 -9.
  • [39] Clyne TW, Gill SC. Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol. 1996;5(4):401.
  • [40] Widjaja S, Limarga AM, Yip TH. Modeling of residual stresses in a plasma-sprayed zirconia/alumina functionally graded-thermal barrier coating. Thin Solid Films. 2003. https ://doi.org/10.1016/S0040 -6090(03)00427 -9.
  • [41] Levit M, Grimberg I, Weiss BZ. Residual stresses in ceramic plasma-sprayed thermal barrier coatings: measurement and calculation. Mater Sci Eng A. 1996;206:30–8. https ://doi.org/10.1016/0921-5093(95)09980 -8.
  • [42] Bhattacharyya A, Maurice D. Residual stresses in functionally graded thermal barrier coatings. Mech Mater. 2018;129:50–6. https ://doi.org/10.1016/j.mechm at.2018.11.002.
  • [43] Ojha S, Thakare JG, Giri A, Pandey C, Mahapatra MM, Mulik RS. Experimental and numerical investigation of residual stress in coatings on steel. J Test Eval. 2020;48:20180247. https ://doi.org/10.1520/jte20 18024 7.
  • [44] Peter Worth AW. Residual stress measurement and the slitting method. New York: Springer; 2007. https ://doi.org/10.1007/978-0-387-39030 -7.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c51cacb3-6f42-40da-b650-8309105f812b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.