PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Decomposition and Kinetics Studies of AN, KDN and Their Mixtures with and without Catalysts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Potassium dinitramide (KDN) was incorporated in ammonium nitrate (AN) crystals in AN/KDN ratio of 90/10, 75/25 and 50/50 by a co-crystallization method. These mixtures were subjected to thermal decompositional studies (DSC-TG) using a Simultaneous Thermal Analyzer (STA). The catalysts used for the present studies were: i) cupric(II) oxide (CuO) and, ii) copper-cobalt based metal oxide (Cu-Co*). For all catalytic samples, 2% by weight percent of catalyst was added to the total weight of the samples. Thermal decomposition studies were carried out for all the oxidizer samples prepared. Thermal decompositional studies were carried out at three different heating rates, i.e. 3 K/min, 5 K/min and 10 K/min, and the kinetic parameters were computed using the model free Flynn-Wall-Ozawa equation. It has been observed that 50% KDN addition resulted in complete suppression of endothermicity indicating total supression of the phase changes of AN in this temperature range. Further, it was noticed that CuO acts as a better phase stabilizer for AN as compared to Cu-Co*. However, Cu-Co* considerably increased the net exothermic decompositional heat release (J/g) of AN.
Rocznik
Strony
184--200
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Birla Institute of Technology, Mesra, 835215 Ranchi, India
autor
  • Birla Institute of Technology, Mesra, 835215 Ranchi, India
autor
  • Birla Institute of Technology, Mesra, 835215 Ranchi, India
Bibliografia
  • [1] Oommen, C.; Jain, S. R. Ammonium Nitrate: a Promising Rocket Propellant Oxidizer. J. Hazard. Mater. 1999, 67: 253-281.
  • [2] Hong, M. Experimental Correction of Combustion Gas Properties of AN-based Composite Solid Propellants Used For Turbo-Pump Starter. Aero. Sc. Tech. 2012, 16(1): 56-60.
  • [3] Dellien, I. A DSC Study of the Phase Transformations of Ammonium Nitrate. Thermochim. Acta 1982, 55: 181-191.
  • [4] Mehrotra, A. K.; Ill, W.; Markovich, I. L.; Ariz, W. Potassium Fluoride Stabilized Ammonium Nitrate and Method of Producing Potassium Fluoride Stabilized Ammonium Nitrate. Patent US 5,098,683. Olin Corporation, Chesire, Conn., 1992.
  • [5] Sinditskii, V. P.; Egorshev, V. Y.; Levshenko, A. I.; Serushkin, V. V. Ammonium Nitrate: Combustion Mechanism and the Role of Additives. Propellants Explos. Pyrotech. 2005, 30: 269-280.
  • [6] Klyakin, G. F.; Taranushich, V. A. Phase Stabilization of Ammonium Nitrate with Binary Additives Consisting of Potassium Nitrate and Complexone Salts. Russ. J. Appl. Chem. 2008, 81: 748-751.
  • [7] Borman, S. Advanced Energetic Materials Emerge for Military and Space Applications. Chem. Eng. News 1994, 72: 18-21.
  • [8] Sudhakar, R.; Mathew, S. Thermal Behavior of CuO Doped Phase Stabilized Ammonium Nitrate. Thermochim. Acta 2006, 451: 5-9.
  • [9] Vargeese, A.; Mija, A. S. J.; Muralidharan, K. Effect of Copper Oxide, Titanium Dioxide, and Lithium Fluoride on the Thermal Behavior and Decomposition Kinetics of Ammonium Nitrate. J. Energ. Mater. 2014, 32: 146-161.
  • [10] Golovina, N.; Nechiporenko, G.; Nemtsev, G.; Zyuzin, I.; Manelis, G. B.; Lempert, D. Ammonium Nitrate Phase State Stabilization with Small Amounts of Some Organic Compounds. Cent. Eur. J. Energ. Mater. 2009, 6: 45-56.
  • [11] Izato, Y.; Miyake, A.; Date, S. Combustion Characteristics of Ammonium Nitrate and Carbon Mixtures Based on Thermal Decomposition Mechanism. Propellants Explos. Pyrotech., 2013, 38: 129-135.
  • [12] Babkina, T. S.;. Golovina, N. B.; Bogachev, A. G.; Olenev, A. V.; Shevelkov, A. V.; Uspenskaya, I. A. Crystal Structures and Physicochemical Properties of Mixed Salts of Ammonium Nitrate and Sulfate. Russ. Chem. Bull. 2012, 16: 33-39.
  • [13] Boyars, C.; Holdan, R. J.; Bertram L. A. Minol IV, A New Explosive Composition Containing Ammonium Nitrate – Potassium Nitrate Solid Solution, Part I., Naval Ordnance Laboratory, White Oak, Maryland, Technical Report 73-49, 1973.
  • [14] Bottaro, J. C.; Penwell, P. E.; Schmitt, R. J. 1,1,3,3-Tetraoxo-1,2,3-triazapropene Anion, a New Oxy Anion of Nitrogen: the Dinitramide Anion and its Salts. J. Am. Chem. Soc. 1997, 119: 9405-9410.
  • [15] Vandel, A. P.; Lobanova, A. A.; Loginova, V. S. Application of Dinitramide Salts (Review). Russ. J. Appl. Chem. 2009, 89(10): 1763-1768.
  • [16] Gołofit, T.; Maksimowski, P.; Biernacki, A. Optimization of Potassium Dinitramide Preparation. Propellants Explos. Pyrotech. 2013, 38: 261-265.
  • [17] Berger, B. P.; Matheiu, J.; Folly, P. Alkali-dinitramide Salts. Part 2: Oxidizers for Special Pyrotechnic Applications. Propellants Explos. Pyrotech. 2006, 31: 269-277.
  • [18] Hwang, B. J.; Santhanam, R.; Liu, D. G. Characterisation of Nanoparticles of LiMn2O4 Synthsized by Citric Acid Sol-gel Method. J. Power Sources 2001, 97-98: 443-446.
  • [19] Hao, Y.; Lai, Q.; Lui, D.; Xu, Z.; Ji, X. Synthesis by Citric Acid Sol-gel Method and Electrochemical Properties of Li4Ti5O12 Anode Material for Lithium-ion Battery. Mater. Chem. Phys. 2005, 94: 382-387.
  • [20] Bowen, N. L. Properties of Ammonium Nitrate I: A Metastable Inversion in Ammonium Nitrate. J. Phys. Chem. 1926, 30(6): 721-725.
  • [21] Le, M.; Zhang, Z.; Kong, Y.; Liu, Z.; Zhu, C.; Shao, Y.; Zhang, P. The Thermal Stability of Potassium Dinitramide. Part 1. Thermal Stability. Thermochim. Acta 1999, 335: 105-112.
  • [22] Lei, M.; Liu, Z.; Kong, Y.; Yin, C.; Wang, B.; Wang, Y.; Zhang, P. The Thermal Stability of Potassium Dinitramide. Part 2. Mechaanism of thermal decomposition. Thermochim. Acta 1999; 335: 113-120.
  • [23] Yin, C.; Liu, Z.; Kong, Y.; Zhao, F; Wang, Y.; Lei, M.; Luo, Y.; Zhang, P.; Shao, Y.; Li, S. Thermal Decomposition of Potassium Dinitramide at Elevated Pressures. in: Solid Propellant Chemistry, Combustion and Interior Ballistics. (Yang, V.; Brill, T. B.; Ren, W. Z., Eds.), AIAA, New York, 2000; 185: 425-437.
  • [24] Biteau, H. Thermal and Chemical Behavior of an Energetic Material and a Heat Release Rate Issue. Ph.D. Thesis, The University of Edinburgh, 2009.
  • [25] Hosseini, S. G.; Eslami, A. Thermoanalytical Investigation of Relative Reactivity of some Nitrate Oxidants in Tin-fueled Pyrotechnic Systems. J. Therm. Anal. Calorim. 2010, 101: 1111-1119.
  • [26] Chakravarthy, S. R.; Freeman, J. M.; Sigman, R. K.; Price, E.W. Combustion of Propellants with Ammonium Dinitramide. Propellants Explos. Pyrotech. 2004, 29: 220-230.
  • [27] Chaturvedi, S.; Dave, P.N. Review on Thermal Decomposition of Ammonium Nitrate. J. Ener. Mater. 2013, 31(1): 1-26.
  • [28] Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38: 1881.
  • [29] Rao, D. C. K.; Yadav, N.; Joshi, P.C. Cu-Co-O Nano Catalysts as a Burn Rate Modifier for Composite Solid Propellants. Defence Technology 2016.
  • [30] Kumar, P.; Joshi, P. C.; Kumar, R. Thermal Decompositon and Combustion Studies of AN/KDN Based Solid Propellants, Combust. Flame 2016, 166: 316-332.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c518fba2-90c4-4048-a22c-b39d2c6e880f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.