PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of GNP effect on mechanical and morphological characteristics of liquid phase sintered SS316l nanocomposites processed via mechanical alloying and pressureless sintering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on the development of stainless steel (SS) 316L nanocomposites reinforced with graphene nanoplatelets (GNP) employing the pressureless sintering technique. The optimal pressure of 600 MPa was used to obtain green composite samples. Composite samples with GNP weight percentages of 0.25, 0.5, and 0.75 were sintered at 1400 °C for 90 minutes under vacuum of 0.001 mbar. The effect of the GNP reinforcement on the SS316L composites was investigated by means of microstructure observations and mechanical tests. The observations of the microstructure of the composite samples revealed equiaxed and twin-grain structures, implying austenite. Grain refinement can be observed as a consequence of the addition of GNP up to 0.5 wt.% in the SS316L matrix. GNP were found to be an effective reinforcement in improving the hardness (287.7 HV) and ultimate tensile strength (554.62 MPa). However, for the 0.75 wt.% GNP composite samples, issues like agglomeration, grain coarsening, and the presence of a grain boundary precipitate (Cr7C3) resulted in a deterioration of the mechanical properties.
Rocznik
Strony
95--103
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • University College of Engineering Kakinada (A), Department Mechanical Engineering, JNTUK Kakinada, 533003, Andhra Pradesh, India
  • University College of Engineering Kakinada (A), Department Mechanical Engineering, JNTUK Kakinada, 533003, Andhra Pradesh, India
Bibliografia
  • 1. Kurgan N., Effects of sintering atmosphere on microstructure and mechanical property of sintered powder metallurgy 316L stainless steel, Mater. Des. 2013, 52, 995-998, DOI: 10.1016/j.matdes.2013.06.035.
  • 2. Panda S.S., Singh V., Upadhyaya A., Agrawal D., Effect of conventional and microwave sintering on the properties of yttria alumina garnet-dispersed austenitic stainless steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2006, 37,7, 2253-2264, DOI: 10.1007/BF02586144.
  • 3. Kim H.S., Densification mechanisms during hot isostatic pressing of stainless steel powder compacts, J. Mater.Process. Technol. 2002, 123, 2, 319-322, DOI:
  • 10.1016/S0924-0136(02)00104-8.
  • 4. Pandya S., Ramakrishna K.S., Raja Annamalai A.,Upadhyaya A., Effect of sintering temperature on the mechanical and electrochemical properties of austenitic stainless steel, Mater. Sci. Eng. A, 2012, October, 556, 271-277, DOI: 10.1016/j.msea.2012.06.087.
  • 5. Wang M., Sun H., Zou L., Zhang G., Li S., Zhou Z., Structural evolution of oxide dispersion strengthened austenitic powders during mechanical alloying and subsequent consolidation, Powder Technol. 2015, 272, 309-315, DOI: 10.1016/j.powtec.2014.12.008.
  • 6. Raja Annamalai A., Upadhyaya A., Agrawal D.K., Effect of heating mode and Y2O3 addition on electrochemical response on austenitic and ferritic stainless steels, Corros. Eng. Sci. Technol. 2015, 50, 2, 91-102, DOI: 10.1179/1743278214Y.0000000176.
  • 7. Kumar P.K., Sai N.V., Krishna A.G., Effect of Y2O3 addition and cooling rate on mechanical properties of Fe-24Cr-20Ni-2Mn steels by powder metallurgy route, Compos. Commun. 2018, 10, 116-121, DOI: 10.1016/j.coco.2018.09.003.
  • 8. Kim D., Kang H., Bae D., Nam S., Quevedo-Lopez M.,Choi H., Synthesis of reduced graphene oxide/aluminum nanocomposites via chemical-mechanical processes, J. Compos. Mater. 2018, 52, 22, 3015-3025, DOI: 10.1177/0021998318760152.
  • 9. Khanna V., Kumar V., Bansal S.A., Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective, Mater. Res. Bull. 2021, June, 138, 111224, DOI: 10.1016/j.materresbull.2021.111224.
  • 10. Khoshghadam-Pireyousefan M., Rahmanifard R., Orovcik L., Švec P., Klemm V., Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: Synthesis, microstructure, and mechanical properties, Mater. Sci. Eng. A 2020, 772, 138820, DOI:10.1016/j.msea.2019.138820.
  • 11. Chatterjee S., Nüesch F.A., Chu B.T.T., Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites, Nanotechnology 2011, 22, 27,DOI: 10.1088/0957-4484/22/27/275714.
  • 12. Zhou W., Fan Y., Feng X., Kikuchi K., Nomura N., Kawasaki A., Creation of individual few-layer graphene incorporated in an aluminum matrix, Compos. Part A Appl. Sci. Manuf. 2018, 112, 168-177, DOI: 10.1016/ j.compositesa.2018.06.008.
  • 13. Ali S., Rani A.M.A., Altaf K., Baig Z., Investigation of boron addition and compaction pressure on the compactibility, densification and microhardness of 316L stainless steel, IOP Conf. Ser. Mater. Sci. Eng. 2018, 344, 1, DOI: 10.1088/1757-899X/344/1/012023.
  • 14. Sadooghi A., Payganeh G., Effects of sintering process on wear and mechanical behavior properties of titanium carbide/hexagonal boron nitrid/steel 316L base nanocomposites, Mater. Res. Express 2018, 5, 2, DOI: 10.1088/ 2053-1591/aaaf7a.
  • 15. Kumar S.S., Sandeep E.S., Chandrasekhar S.B., Karak S.K., Development of nano-oxide dispersed 304L steels by mechanical milling and conventional sintering, Mater. Res. 2016, 19, 1, 175-182, DOI: 10.1590/1980-5373-MR-2015-0593.
  • 16. Zengin E., Ahlatci H., Zengin H., Investigation of microstructure, tribological and corrosion properties of AISI 316 L stainless steel matrix composites reinforced by carbon nanotubes, Mater. Today Commun. 2021, 29, May, 102758, DOI: 10.1016/j.mtcomm.2021.102758.
  • 17. Radhamani A.V., Lau H.C., Kamaraj M., Ramakrishna S., Structural, mechanical and tribological investigations of CNT-316 stainless steel nanocomposites processed via spark plasma sintering, Tribol. Int. 2020, July, 152, 106524,DOI: 10.1016/j.triboint.2020.106524.
  • 18. Kandala S.R., Balani K., Upadhyaya A., Mechanical and electrochemical characterization of supersolidus sintered austenitic stainless steel (316 L), High Temp. Mater. Process. 2019, 38, 792-805, DOI: 10.1515/htmp-2019-0032.
  • 19. Mandal A. et al., Tribological behavior of graphenereinforced 316L stainless-steel composite prepared via selective laser melting, Tribol. Int. 2020, May, 151, 106525, DOI: 10.1016/j.triboint.2020.106525.
  • 20. German R.M., Suri P., Park S.J., Review: Liquid phase sintering, J. Mater. Sci. 2009, 44, 1, 1-39, DOI: 10.1007/s10853-008-3008-0.
  • 21. Bollina R., Park S.J., German R.M., Master sintering curve concepts applied to full-density supersolidus liquid phase sintering of 316L stainless steel powder, Powder Metall. 2010, 53, 1, 20-26, DOI: 10.1179/174329009X409688.
  • 22. Badini C., Fino P., An overview of key challenges in th fabrication of metal matrix nanocomposites reinforced by graphene nanoplatelets, Metals (Basel) 2018, 8, 3, DOI:10.3390/met8030172.
  • 23. Hirota K., Mitani K., Yoshinaka M., Yamaguchi O., Simultaneous synthesis and consolidation of chromium carbides (Cr3C2, Cr7C3 and Cr23C6) by pulsed electriccurrent pressure sintering, Mater. Sci. Eng. A, 2005, 399, 1-2, 154-160, DOI: 10.1016/j.msea.2005.02.062.
  • 24. Martín F., García C., Blanco Y., Rodriguez-Mendez M.L., Influence of sinter-cooling rate on the mechanical properties of powder metallurgy austenitic, ferritic, and duplex stainless steels sintered in vacuum, Mater. Sci. Eng. A 2015, 642, 360-365, DOI: 10.1016/j.msea.2015.06.097.
  • 25. Boonruang C., Sanumang W., Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel, Sci. Rep. 2021, 11, 1, 1-11, DOI: 10.1038/s41598-021-91958-x.
  • 26. Ren W. et al., A facile and cost-effective approach to fabricate in-situ synthesized graphene nanosheet reinforced 316L stainless steel, JOM 2020, 72, 12, 4514-4521, DOI: 10.1007/s11837-020-04440-w.
  • 27. Rao G.A., Kumar M., High performance stainless steel via powder metallurgy hot isostatic pressing, Mater. Sci. Technol. 1997, 13, 12, 1027-1032, DOI: 10.1179/mst.1997.13.12.1027.
  • 28. Veeramallu K., Gopalakrishna A., Effect of SiC coated GNP on microstructure and mechanical properties of pressureless sintered SS316L composites, i-manager’s, J. Mech. Eng. 2022, 12, 3, 1, DOI: 10.26634/jme.12.3.18589.
  • 29. Mandal A., Tiwari J.K., Sathish N., Srivastava A.K., Microstructural and mechanical properties evaluation of graphene reinforced stainless steel composite produced via selective laser melting, Mater. Sci. Eng. A 2020, January,774, 138936, DOI: 10.1016/j.msea.2020.138936.
  • 30. Yang X., Gao F., Tang F., Hao X., Li Z., Effect of surface oxides on the melting and solidification of 316L stainless steel powder for additive manufacturing, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2021, 52, 10, 4518-4532, DOI: 10.1007/s11661-021-06405-3.
  • 31. Sharon A., Itzhak D., Mechanical properties of sintered austenitic stainless steel-effect of silicon addition, Mater Sci. Eng. A 1992, 157, 2, 145-149, DOI: 10.1016/0921-5093(92)90021-R.
  • 32. Gamsjäger E., Ogris D.M., Svoboda J., Kinetics of grain boundary networks controlled by triple junction and grain boundary mobility, Metals (Basel) 2018, 8, 12, DOI:10.3390/met8120977.
  • 33. Ouyang W. et al., Multilayer-graphene reinforced 316L matrix composites preparation by laser deposited additive manufacturing: Microstructure and mechanical property analysis, Mater. Res. Express 2019, July, 6, 9, DOI: 10.1088/2053-1591/ab2f2e.
  • 34. Fu L. et al., Microstructure and tribological properties of Cr3C2/Ni3Al composite materials prepared by hot isostatic pressing (HIP), Mater. Des. 2017, February, 115, 203-212, DOI: 10.1016/j.matdes.2016.11.060.
  • 35. Small M., Ryba E., Calculation and evaluation of the gibbs energies of formation of Cr3C2, Cr7C3, and Cr23C6., Metall. Trans. A, Phys. Metall. Mater. Sci. 1981, 12 A, 8, 11389-11396, DOI: 10.1007/bf02643683.
  • 36. Wen S., Chen K., Li W., Zhou Y., Wei Q., Shi Y., Selective laser melting of reduced graphene oxide/S136 metal matrix composites with tailored microstructures and mechanical properties, Mater. Des. 2019, 175, 107811, DOI: 10.1016/ j.matdes.2019.107811.
  • 37. Jeong G. et al., The effect of grain size on the mechanical properties of aluminum, Arch. Metall. Mater. 2015, 60, 2, 1287-1291, DOI: 10.1515/amm-2015-0115.
  • 38. Umar M.D., Muraliraja R., Shaisundaram V.S., Wayessa S.G., Influence of future material nano-ZrO2 and graphene on the mechanical properties of Al composites, J. Nanomater. 2022, 3, 1-7, DOI: 10.1155/2022/1454037.
  • 39. Yang S. et al., Effects of the graphene content on mechanical properties and corrosion resistance of aluminum matrix composite, J. Mater. Res. Technol. 2024, 28, January-February, 1900-1906, DOI: 10.1016/j.jmrt.2023.12.059.
  • 40. AbuShanab W.S., Moustafa E.B., Ghandourah E., Taha M.A., Effect of graphene nanoparticles on the physical and mechanical properties of the Al2024-graphene nanocomposites fabricated by powder metallurgy, Results Phys. 2020, August, 19, 103343, DOI: 10.1016/j.rinp.2020.103343.
  • 41. Rashad M., Pan F., Tang A., Asif M., Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Prog. Nat. Sci. Mater. Int. 2014, 24, 2, 101-108, DOI: 10.1016/j.pnsc.2014.03.012.
  • 42. Subbaiah V., Palampalle B., Brahmaraju K., Microstructural analysis and mechanical properties of pure Al–GNPs composites by stir casting method, J. Inst. Eng. Ser. C 2019, 100, 3, 493-500, DOI: 10.1007/s40032-018-0491-1.
  • 43. Shashanka R., Chaira D., Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering, Mater. Charact. 2015, 99, 220-229, DOI: 10.1016/j.matchar.2014.11.030.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c513ce4d-b00a-4df5-ab89-965d8775d906
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.