PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of Fabric Surface Resistance by Van Der Pauw Method in Case of Contacts Distant from the Sample Edge

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The van der Pauw method can be used to determine the electroconductive properties of textile materials. However, the sample surface resistance can be determined provided that the sample has characteristics typical for the van der Pauw structure. In the paper, a method of evaluating the sample structure is shown. The selected electroconductive woven fabrics are used as an example of van der Pauw structure. An analysis of impact of electrodes placement on the resistance measurements was conducted. Knowing how the resistance of the sample varies with the electrodes distance from the edge, the samples’ surface resistances were calculated in cases when the electrodes are placed at the sample edge. An uncertainty analysis of the samples’ surface resistances was conducted based on the Monte Carlo method.
Rocznik
Strony
55--60
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Department of Architecture of Textiles, Lodz University of Technolgy
Bibliografia
  • 1. Van der Pauw, L.J.: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Research Reports 13 (1958), p.1-9
  • 2. Van der Pauw, L.J.: A method of measuring resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Technical Review 20 (1958/59), p.220-224
  • 3. Kazani, I.: Study of screen-printed electroconductive textile materials. Doctoral Thesis. Faculty of Engineering and Architecture, Ghent University 2012
  • 4. Kazani, I., Hertleer, C., De Mey, G., Schwarz, A., Guxho, G., Van Langenhove, L.: Electrical conductive textiles obtained by screen printing. Fibres and Textiles in Eastern Europe 20 (2012), p.57-63
  • 5. Náhlík, J., Kašpárková, I., Fitl, P.: Influence of non-ideal circumferential contacts on errors in the measurements of the resistivity of layers using the van der Pauw method. Measurement 46 (2013), p.887-892
  • 6. Kazani, I., De Mey, G., Hertleer, C., Banaszczyk, J., Schwarz, A., Guxho, G., Van Langenhove, L.: Van der Pauw method for measuring resistivities of anisotropiclayers printed on textile substrates. Textile Research Journal 81 (2011), p.2117-2124
  • 7. Tokarska, M.: Evaluation of measurement uncertainty of fabric surface resistance implied by the Van der Pauw equation. IEEE Transactions on Instrumentation and Measurement (2013) DOI: 10.1109/TIM.2013.2289695
  • 8. Tokarska, M.: Measuring resistance of textile materials based on Van der Pauw method. Indian Journal of Fibre and Textile Research 38 (2013), p.198-201
  • 9. Kasl, C., Hoch, M.J.R.: Effects of sample thickness on the van der Pauw technique for resistivity measurements. Review of Scientific Instruments 76 (2005), p.033907-1- 033907-4
  • 10. Wu, B., Huang, X., Han, Y., Gao, Ch., Peng, G., Liu, C, Wang, Y., Cui, X., Zou, G.: Finite element analysis of the effect of electrodes placement on accurate resistivity measurement in a diamond anvil cell with van der Pauw technique. Journal of Applied Physics 107 (2010), p.104903-1-104903-4
  • 11. Wenner, F.: A method of measuring earth resistivity. Bulletin of the Bureau of Standards 12 (1916), p.469-478
  • 12. Szosland, J.: Struktury tkaninowe (in Polish). PAN Lodz 2007
  • 13. Szosland, J.: Modelling the structural barrier ability of woven fabrics. Autex Research Journal 3 (2003), p.102-110
  • 14. Lim, S.H.N., McKenzie, D.R., Bilek, M.M.M.: Van der Pauw method for measuring resistivity of a plane sample with distant boundaries. Review of Scientific Instruments 80 (2009), p.075109-1-075109-4
  • 15. Tokarska, M., Frydrysiak, M., Zięba, J.: Electrical properties of flat textile material as inhomegeneous and anisotropic structure. Journal of Materials Science - Materials in Electronics (2013) DOI: 10.1007/s10854-013-1524-4
  • 16. ASTM F76-08. Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in Single-Crystal Semiconductors
  • 17. Deen, M.J., Pascal, F.: Electrical characterizations of semiconductor materials and devices - review. Journal of Materials Science - Materials in Electronics 17 (2006), p.549-575
  • 18. Džakula, R., Savić, S., Stojanović, G.: Investigation of electrical characteristics of different ceramic samples using Hall effect measurement. Processing and Application of Ceramics 2 (2008), p.33-37
  • 19. ISO 139:2005. Textiles - Standard atmospheres for conditioning and testing
  • 20. Evaluation of measurement data - Guide to the expression of uncertainty in measurement, JCGM (2008)
  • 21. Corder, G.W., Foreman, D.I.: Nonparametric statistics for non-statisticians: A step-by-step approach. John Wiley & Sons 2009
  • 22. Seber, G.A.F., Wild, C.J.: Nonlinear regression. John Wiley & Sons 2003
  • 23. Evaluation of measurement data - Supplement 1 to the “Guide to the expression of uncertainty in measurement” - Propagation of distributions using a Monte Carlo method, JCGM (2008)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c50ecda1-c3c7-468e-9c4e-d83b2dc5eca7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.