PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Failures prediction based on performance monitoring of a gas turbine: a binary classification approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is dedicated to employ novel technique of deep learning for machines failures prediction. General idea of how to transform sensor data into suitable data set for prediction is presented. Then, neural network architecture that is very successful in solving such problems is derived. Finally, we present a case study for real industrial data of a gas turbine, including results of the experiments.
Rocznik
Tom
Strony
9--21
Opis fizyczny
Bibliogr. 22 poz., tab.
Twórcy
autor
  • Reliability Solutions, ul. Lubla«ska 34, 31-476 Kraków, Poland
autor
  • Reliability Solutions, ul. Lubla«ska 34, 31-476 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Reliability Solutions, ul. Lubla«ska 34, 31-476 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Reliability Solutions, ul. Lubla«ska 34, 31-476 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Rosmaini A., Shahrul K., An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering, 2012, 63 (1), pp. 135-149.
  • [2] Jardine A.K.S., Lin D., Banjevic D., A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 2006, 20 (7), pp. 1483-1510.
  • [3] Compare M., Zio E., Predictive maintenance by risk sensitive particle filtering. IEEE Transactions on Reliability, 2014, 63 (1), pp. 134-143.
  • [4] Uysal H., A genetic programming approach to classification problems. University College Dublin Dublin, Ireland, 2013.
  • [5] Bishop C.M., Pattern recognition and machine learning. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
  • [6] Mather P., Tso B., Classification methods for remotely sensed data. CRC Press, Boca Raton, 2016.
  • [7] Aggarwal C.C., Data classification: algorithms and applications. Chapman |& Hall/CRC, 1st edition, 2014.
  • [8] Krizhevsky A., Sutskever I., Hinton G.E., Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, 2012, pp. 1097-1105.
  • [9] Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115 (3), pp. 211-252.
  • [10] He K., Zhang X., Ren S., Sun J.. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
  • [11] Susto G.A., Schirru A., Pampuri S., McLoone S., Beghi A., Machine learning for predictive maintenance: A multiple classifier approach. IEEE Transactions on Industrial Informatics, 2015, 11 (3), pp. 812820, 2015.
  • [12] Breiman L., Random forests. Machine learning, 2001, 45 (1), pp. 5-32.
  • [13] Che T., Guestrin C., Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794.
  • [14] Hubel D.H., Wiesel T.N., Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 1968, 195 (1), pp. 215-243.
  • [15] LeCun Y., Bengio Y., et al. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 1995, 3361 (10), pp. 1-14.
  • [16] Yang J., Nguyen M.N., San P.P., Li X., Krishnaswamy S., Deep convolutional neural networks on multichannel time series for human activity recognition. IJ-CAI, 2015, pp. 3995-4001.
  • [17] Fukushima, K., Miyake S., Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. Competition and cooperation in neural nets, 1982, pp. 267-285.
  • [18] Ioffe S., Szegedy C., Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning, 2015, pp. 448-456.
  • [19] Courville A., Goodfellow I., Bengio Y., Deep Learning. MIT Press, 2016.
  • [20] Zeiler M.D., Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.
  • [21] He K., Zhang X., Ren S., Sun J., Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026-1034.
  • [22] Caruana R., Niculescu-Mizil A., An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning, 2006, pp. 161 168.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5083b6b-aaf6-46a7-9219-9f431385a1b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.