
F
I R

 S
 T

V I

E W

Schedae Informaticae Vol. 26 (2017): 9�21
doi: 10.4467/20838476SI.17.002.7246

Failures Prediction Based on Performance Monitoring of
a Gas Turbine: a Binary Classi�cation Approach

Bartªomiej Mulewicz1, Mateusz Marzec1,2,

Paweª Morkisz1,2, Piotr Oprocha1,2

1Reliability Solutions, ul. Lubla«ska 34, 31-476 Kraków, Poland
2AGH University of Science and Technology, Faculty of Applied Mathematics,

al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: bartlomiej.mulewicz@relia-sol.pl, mateusz.marzec@relia-sol.pl,

morkiszp@agh.edu.pl, oprocha@agh.edu.pl

Abstract. This paper is dedicated to employ novel technique of deep learning for

machines failures prediction. General idea of how to transform sensor data into

suitable data set for prediction is presented. Then, neural network architecture

that is very successful in solving such problems is derived. Finally, we present

a case study for real industrial data of a gas turbine, including results of the

experiments.

Keywords: Predictive Maintenance, Deep Learning, binary classi�cation, con-

volutional neural network

1. Introduction

One of key goals in production management is to maintain production line in service.
Failures of machines in production lines can result in huge loss caused by not su�cient
total production, waste of semi-products etc. It is one of main reasons why companies
are interested in continuous improvements in their maintenance managements. The
key feature is that sometimes it may cost less to make occasionally an unnecessary
change of parts or perform some additional tests, rather than stop production for
a longer time. In general, there are four main approaches to maintenance:

Received: June 26, 2017 / Accepted: September 7, 2017

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

10

� Run-to-Failure (R2F): in this approach any actions are performed after failure
of some machine occurs. This is clearly the simplest possible approach. It is
not obvious; however, that it is the cheapest one. First of all, it may generate
high costs of production stop. Second thing is that unexpected failure can
destroy some other parts of the machine, which in the process of well directed
maintenance could be saved. On the other hand, there are types of problems
where not much can be done before failure occurs;

� Preventive Maintenance (PvM): in this approach maintenance actions are con-
ducted according to some general schedule, based on expected lifetime of parts.
This approach is based much more on statistical knowledge about machine and
its parts, than everyday observation. Of course, when one part is replaced
following the schedule, some additional parts might be replaced, if they are
noticeably worn out;

� Condition-based monitoring (CBM): in this approach, condition of the ma-
chinery is estimated based on sensor data (c.f. [1]). This is not limited to
the sensors already available on the machine, but also includes complementary
sensors, e.g. vibration, acoustic or oil analyses [2]. In this approach it is possible
to quickly detect the failure in its early stage but it does not give any time to
prepare for it.

� Predictive Maintenance (PdM): in this approach, sensor measurements and
knowledge about historical behavior of the machine are used in real time to
predict necessary replacement of parts. In other words, we try to predict a fail-
ure before it occurs. For that purpose the holistic analysis of the data from
the whole installation also adds signi�cant value as some of the failures have its
germs in other parts of the process and cannot be observed only by analyzing
sensor data from the particular machine.

In recent years high development in electronics which resulted in huge increase of
data related to performance and control of machines could be observed. That includes
both the steering type data but also sensor data from the machinery built-in sensors
or from complementary condition-based monitoring sensors. In PdM one of the goals
is to successfully employ this data for prediction of oncoming failure. This data can
be also used for assessment of degradation state of parts and better estimation of
failure probability in PvM approach [3].

Motivation for the present research comes from partnership with a large chem-
ical company which indicated a problem of a gas turbine repeatedly reaching high
vibrations. Such vibrations succeeded in multiple emergency stops done by the vibro-
diagnostics condition monitoring systems, as otherwise the turbine can be damaged.
As the production process is strictly linear, each turbine downtime caused outage of
the whole production, hence causing huge �nancial losses. A possible solution is to
predict incoming problem of unusual vibrations. Such preventive alert enables oper-
ator to slightly decrease the turbine load in prior to the oncoming failure, stabilizing
the vibrations in advance. Then, after short time period, turbine can safely reach its
regular e�ciency. In this paper we present a possible solution to obtain this goal. We
employ some modern tools to test this approach in practice and compare its e�ciency
with some other standard tools that can be used.

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

11

It is di�cult to decide on best solution to the classi�cation problem as a whole.
A huge number of di�erent methods were developed during last decade, and which
method works best depends largely on the nature of the data (e.g. see [4, 5, 6, 7]).
It seems however, that for data with any internal structure, the best option available
presently are convolutional neural networks (CNN for short). Their development can
be depicted on the example of the classi�cation of images and the Imagenet LSVRC
competition. Since 2012, when AlexNet [8] was introduced, CNNs win year by year
[9]. Results are signi�cantly better each time, achieving superhuman performance in
2015 [10] and top 5 error below 3% in 2016 (cf. LSVRC results published annually
in the internet). The main feature of CNNs is that they use relationships between
neighboring variables (adjacent pixels in case of image analysis) and it turned out that
features learned by most recent CNN architectures are better than all other proposed
in the computer vision. The lowest layers usually detect edges and some other simple
motifs, more and more complex features are detected by consecutive layers. In the
case of time series, usually the relationship between variables is more complex and
there is no method to stack them against each other. However we aim to show that
the use of two-dimensional convolutional �lters still can give very satisfactory result.
In our study we have decided to use one-dimensional �lters that work on the values of
a given variable at the moment and at its closest history. This approach is based on
the assumption that similar features should be relevant to many variables, but instead
of looking for them by statistical tools, we use convolutional networks to detect these
features for us in the learning process.

2. Model concept and considered architectures

There are several di�erent concepts that can be used for dealing with PdM problems
(e.g. see [11]). In our work we will focus on a particular one and solve it using a few
di�erent tools for classi�cation of data. By standard approach to machine learning
we assume that we have some number of observations, which compose a data set
D = {(Xi, Yi)}ni=1 where n should be large. For our problem we may assume that
machine is working continuously until it breaks, then is stopped and repaired. But it
is not visible directly in the time series because during period of stopping the sensors
measurements are not recorded. We only have a time-stamp that at some moment
failure occurred. Each Xi represents a response of sensors which are real numbers
in some range, that is each Xi ∈ Rp. Clearly p is in practice much larger than the
number of sensors, since each sensor can measure more than one parameter (e.g.
temperature and humidity). Output parameter Yi relates measurement of sensors
with present state of the machine. In our approach we consider two possible states
faulty: F and not faulty: NF. State F means that there were some problems with
the machine. In some cases it was stopped and repaired, but other possibility is that
some preventive control took place, and while the machine was not stopped itself,
production was halted for a while. Since we want to prevent bad behavior of the
machine, we adopt suggestion of [11] and mark as F not only the last moment when

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

12

the failure took place, but also last k records preceding the failure. Size k depends
on the time horizon which we want to take into account in prediction.

As we see, we transformed prediction problem to a binary classi�cation problem.
We have to assign Xi to proper class Yi ∈ {F,NF}, possibly using some �history
window� Xi−m, Xi−m+1, . . . , Xi.

2.1. Two benchmark classi�ers

In the paper we want to judge e�ciency of deep neural networks in our problem, so we
need some benchmark methods as a check of performance. We focus on the following
two methodologies, which were quite successful in previous years.

Random forest is one of the basic ensemble methods. It is using pre-speci�ed
number of decision trees of the same maximal depth. Trees are build on randomly
selected variables and records from original data set. New examples are classi�ed by
vote counting from all of them. Random forest is ensemble of weak classi�ers which is
proven to be fast to learn and evaluate and is a good classi�er if trees are su�ciently
diverse (see [12] for more details).

Extreme Gradient Boosting (XGBoost) is a model consisted of a lot of weak clas-
si�ers, also decision tress. Di�erence between XGBoost and random forest lies in the
way of construction of new trees. They are created consecutively using special cost
function. It puts more weights on previously misclassi�ed examples and also punish
more complicated trees. Additionally implementation of learning algorithm is optim-
ized so it can run very fast on large data sets. Since its release in 2015 it was highly
competitive and won a lot of machine learning competitions (e.g. see [13]).

2.2. Deep Neural Networks

The most important element of ANN approach is selection of correct network archi-
tecture. In our approach we decided to use convolutional layers, since networks with
such structure were successful previously in data classi�cation problems [8, 10]. This
approach took inspiration from study of visual cortex of brain presented by Hubel and
Wiesel [14]. Application of this type of networks in the analysis of multidimensional
time series was presented before [15, 16], but is not that much common in literature
because of the popularity of recurrent neural networks for time-series predictions. The
main di�erence between chosen approach and basic standard layers (e.g. in standard
MLP network) is that neurons in convolutional layer are not connected with all neur-
ons from previous layer, but only to small block of neurons. In some sense we may
view such a layer as a set of �lters, which depends only on a small neighborhood of
a neuron when passing data to next layer. It relies on the assumption that if �ltering
recognizes a pattern properly at some part of the space, then it should work the same
well in other peaces (neighborhoods of other neurons).

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

13

Layer No. Type Input size Filter size No. �lters

1 Convolutional 1×m× n 1× 3× 1 4
2 Convolutional 4×m× n 4× 3× 1 4
3 Convolutional 4×m× n 4× 3× 1 4
4 Convolutional 4×m× n 4× 3× 1 8
5 Convolutional 8×m× n 8× 3× 1 8
6 Convolutional 8×m× n 8× 3× 1 8
7 Convolutional 8×m× n 8× 3× 1 16
8 Convolutional 16×m× n 16× 3× 1 16
9 Convolutional 16×m× n 16× 3× 1 16
10 Dense 256
11 Out 2

Table 1. General architecture of our networks.

Convolutional neural networks are broadly used because of their ability to learn
increasingly complex features in consecutive layers [17].

Assume that our data (one time step) has n 1-dimensional sensors and that the
time interval of prediction is at leastm time steps (e.g. if we collect data every minute
and want to feed the network with history of 5 minutes we set m = 5). Then the
input data of our network has dimension m×n, consisting of m consecutive (in time)
recordings of n sensors. This input can also be viewed as 1 ×m × n cube (of depth
1), which will simplify out notation.

Now we have to decide the size and number of �lters, which will in�uence the
architecture of all further layers. Since ordering of sensors in our data set is in a sense
random, we believe that �lter should not compare records of neighboring sensors.
However, it should de�nitely take into account neighboring (in time) measurements.
Therefore �lter applied in �rst layer will have dimension 1×3×1. We will use at this
point 4 �lters with stride 1×1×1 and padding 0×1×0, therefore input to the second
layer will have dimension 4 × m × n. In other words, we do not reduce the size of
�data matrix� m×n but test a few di�erent �lters (this will apply to all convolutional
layers we build). Filter applied in the second layer will have the same dimension on
data 3 × 1, but will take into account all 4 values returned by �ltering of �rst layer.
Therefore �lter window for second layer will have dimension 4× 3× 1 and the same
stride and padding as before, which will result in layer three of size 4 ×m × n. In
total we will consider 9 convolutional layers, with dimensions presented in Table 1.
As we can see, �rst 9 layers are divided into 3 groups with 4, 8 and 16 acting �lters,
respectively.

Every �lter use ReLU (or PReLU) activation function. Additionally, in each of
three blocks we have a residual connection between �rst and last layer (e.g. layer 1&3
or 4&6) which is added to respective signals of third layer before activation function
ReLU (resp. PReLU) is applied. After last (ninth) convolutional layer we include
fully connected layer with 256 neurons and again ReLU (resp. PReLU) activation
function. Last layer is consisted of two neurons with softmax activation function for
proper interpretation as probabilities. In other words, after �ltration (convolution)

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

14

we have a dense drop o� layer and �nally on the output we have two signals, which
provide probability of F and NF events (at the end we choose the most probable
class).

2.3. Combined approach

Instead of using single ANN, we can also use some hybrid approach which relies
on outputs of a few di�erent ANNs which we �nd most e�ective. We consider m
classi�ers, together with score

scF =
1

m

∑

{1≤j≤m}
CF

j (X),

where CF
j (Xi) is response (probability of the classi�cation to class F) of j-th classi�er

on data X. Hence, we obtain weighted probability of all classi�ers. If scF > 0.5 then
we classify X as F and as NF otherwise. As we will see, it can have positive e�ect
on decrease of classi�cation mismatch. Such approach was reported previously as
successful in most of competitions (see [10]) and as we will see, it is also the case here.

3. Experimental results

3.1. Data set description

Whole data set D was divided into three parts: training Dt, validation Dv and test
set Df . In order to avoid the problem of �predicting the past with the future�, set Dt

consisted of the data from the �rst half of the period collected in D, records of Dv

came from the third quarter and records in the last 25% of records of D were included
in Df . More precisely, 204000 of records in D were divided into 102500 records in Dt,
51000 records in Dv and 50500 records in Df .

As we can see in Table 2, collected data was extremely unbalanced, when classes F
and NF were considered. Concrete numbers are presented in Table 2. Such a situation
is very common in maintenance problems and its explanation is easy to guess. Simply,
operators of the machine associate avoiding fault the highest priority, together with
the fact that all parts of the machine are of very high quality so failure by solely
machine part failure is very rare as well (it is rather a combination of unexpected
behavior of the machine and unexpected, above average part worn out). This causes
many practical problems, since the proportion of records between classes is around
1/1000.

Then we cannot simply consider number of bad classi�cations as the main indicator
in training process, because even if all classi�cations of F event were wrong, it can

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

15

Data set Faulty (F) Not faulty (NF)
D 83 102417
Dv 21 50979
Df 54 50446

Table 2. Structure of records distribution between classes F and NF.

be very small number compared to good classi�cations (ca. 1/1000 in the worst
scenario). On the other hand, not detected F event can have much more negative
consequences than numerous warnings of F event where there was NF case. To deal
with this problem, in training process we use the following cost function for gradient
descent method algorithm:

H(y, ŷ) = −αF y log(ŷ)− αNF (1− y) log(1− ŷ),

where y ∈ {0, 1} is classi�cation assigned to sample (1 denotes class F), ŷ ∈ [0, 1] is
value returned by ANN for that sample understood as the probability of a sample
belonging to F, and αF , αNF are weights representing cost of misclassi�cation of each
class. In our approach, we de�ne them as diverted proportions of number of examples
from class, that is αF = #NF/#Dt and αNF = 1− αF .

3.2. Parameters and algorithms

Random forest was calculated using scikit-learn 0.18. Model which achieved the best
result has 200 trees with maximal depth equal to 3. For XGBoost we used xgboost
package for python. Model was composed of 200 trees of maximal depth equal to 2.
We set learning rate to 0.009 and λ for L2 regularization equal to 0.4. Both models
also assigned high weights to class F , equal to number of results in NF class divided
by number of results in F class.

In our tests, constructed ANNs were always trained on records from set Dt, and the
process was interrupted when the loss function calculated on the validation set was not
improved for a certain number of epochs (early stopping). Networks were trained with
GPUs using stochastic gradient descent (SGD) with nesterov momentum. Weights
from network with best result on validation set Dv were selected for �nal model (we
will comment on this later). Each network was trained for 10,000 epochs, where one
epoch is number of iterations necessary to run through whole training set. Learning
procedure was stopped when there was no improvement in value of lost function in
100 consecutive epochs. One of training objectives was to accelerate learning process
and to make results more stable, because direct application of (SGD) resulted in less
than 30% of attempts with good result on records in validation set Dv. It was mainly
due to the fact that most of trainings did not converge to the optimal weights.

First method that signi�cantly sped up learning process was batch normalization
[18]. This approach enables using higher learning rates and in consequence neural
network much faster �nds a solution. Unfortunately, even with batch normalization,

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

16

training time was too long and without any guarantee of good stable results. To
resolve this problem, alternative optimization procedures [19] were examined and
as was suggested in literature, method �adadelta� from [20] was usually the best
choice, since we observed that in practice this method requires much less epochs
to converge than the others. Another important element was to stabilize training
in such a way that most of results of learning with the same starting architecture
will achieve similar results on validation set. First step was to improve initialization
of weights. We decided to use approach proposed in [21], to initialize them from
Gaussian distribution with mean 0 and standard deviation equal to

√
2/
√
ni, where

ni is the number of neurons in ith layer. This initialization is more suitable for ReLU
activation function. For PReLU activation we took weights from normal distribution
with mean 0 and standard deviation equal to

√
2/
√
(1 + α2)ni. Finally, to decrease

over�tting, L2 regularization was used. By standard, it was obtained by adding norm
of vector of all weights in network multiplied by properly selected factor (see [19] for
more details).

3.3. Results of considered models on data set

In what follows we will present results of considered classi�ers on validation and test
data sets Dv,Df , by showing misclassi�cation table of the best classi�ers in each
group. Additionally, we will calculate the following benchmark function which will
help us to improve results comparison:

S(xMF , xMNF) = (βFxMF + xMNF)/(βF + 1),

where βF = b#NF/#F c and xMF is the number of records F classi�ed as NF , and
xMNF is the number of records NF classi�ed as F . Motivation of coe�cient βF is
to weigh both misclassi�cations equally (i.e. classi�ers returning always 1 or 0 reach
the same error level). We use this score also to select best model on Dv. Note that
formula for these functions is di�erent for data sets Dv and Df , that is:

βv
F = b50979/21c = 2427, βf

F = b50446/54c = 934.

Results for XGBoost and Random Forest are presented in Table 3. Some research
suggests that a good choice for time series can be LSTM networks. While they seem
good choice for time-series prediction, we were unable to make it work su�ciently
well in considered problems. As an example of these issues, we present in Table 4
results obtained for 3-layer GRU network with 256 neurons and L2 regularization. As
we can see the results are not any better compared to XGBoost or Random Forest.
By this reason we decided to focus on convolutional networks, which were reported
as good classi�ers.

It is fair to mention here that there are some other functions known from the
literature that could be used instead of function S (e.g. see [22] for some possibilities).
The advantage of function S is that it highly prefers decrease of F misclassi�cation,
while also has some sensitivity on decrease in NF misclassi�cation. Such choice is

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

17

Classi�cation
Data set Dv Score Sv

Data set Df Score Sf
NF F NF F

XGBoost
NF 50940 39

2.015238
50403 43

5.040641
F 2 19 5 49

Random
Forest

NF 50932 47
2.018533

50425 21
7.014973

F 2 19 7 47

Table 3. Results for XGBoost and Random Forest with parameters from Section 3.2.

Classi�cation
Data set Dv Score Sv

Data set Df Score Sf
NF F NF F

GRU
NF 50947 32

2.012356
50427 19

8.01176
F 2 19 8 46

Table 4. Results for GRU network.

highly connected with out problem, when we have to decrease bad classi�cations of
F at all cost, and at the same time try to decrease bad classi�cations of NF when
possible.

Next we present results for considered architecture of ANN (with convolutional
layers) for di�erent values of parameter λ in L2 regularization and ReLU or PReLU
activation functions. We consider 6 di�erent approaches to ANN learning as presented
in Table 5. We trained 30 di�erent networks. The number of networks with scores
on Dv better than XGBoost is presented in the last column of Table 5. Next, from
10 best networks in each group we constructed ensembles which average answers of
these networks (see Section 2.3).

Type
activation weights

λ
Better than

function initiation XGBoost
T1 PReLU ReLU 0.000 001 6/30 (20%)
T2 ReLU ReLU 0.000 0005 5/30 (16,67%)
T3 ReLU ReLU 0.000 001 3/30 (10%)
T4 ReLU ReLU 0.000 002 3/30 (10%)
T5 PReLU PReLU 0.000 001 3/30 (10%)
T6 PReLU PReLU 0.000 002 8/30 (26,67%)

Table 5. Six di�erent methods of training within architecture from Table 1.

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

18

Classi�cation
Data set Dv Score Sv

Data set Df Score SfNF F NF F

T1
NF 50778 201

1.082372323
50139 307

0.328342246
F 1 20 0 54

T2
NF 50732 247

1.101317957
42068 8378

8.960427807
F 1 20 0 54

T3
NF 50813 166

1.067957166
48576 1870

2
F 1 20 0 54

T4
NF 50925 54

1.021828666
49905 541

1.577540107
F 1 20 1 53

T5
NF 50647 332

1.136326194
41765 8681

9.284491979
F 1 20 0 54

T6
NF 50042 937

0.385914333
50116 330

8.344385027
F 0 21 8 46

Table 6. Results for best ANNs within group of 30 networks of given type, with
parameters as described in Table 5.

Classi�cation
Data set Dv Score Sv

Data set Df Score SfNF F NF F

T1
NF 50830 149

1.060955519
48655 1791

1.915508021
F 1 20 0 54

T2
NF 50911 68

1.027594728
49765 681

0.728342246
F 1 20 0 54

T3
NF 50869 110

1.044892916
50302 144

1.152941176
F 1 20 1 53

T4
NF 50834 145

2.058896211
50291 155

0.165775401
F 2 19 0 54

T5
NF 50835 144

1.058896211
41466 8980

9.604278075
F 1 20 0 54

T6
NF 50863 116

1.047364086
49462 984

1.052406417
F 1 20 0 54

Table 7. Results for ensembles of ANNs of type as in Table 5.

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

19

4. Conclusions

In this paper we presented a new approach to predictive maintenance problem, em-
ploying deep convolutional networks with one dimensional �lters and residual connec-
tions. Presented single network architecture achieved results better than two standard
methods commonly used to deal with this type of problems. The main di�culties in
considered problems were highly unbalanced classes and instability of learning.

It is evident in Table 6 that single networks are very sensitive with respect to
function S. It may happen (and is visible in the Table) that best function on Dv

can perform quite badly on Df , sometimes even below the benchmark performance of
other methods in Table 3. It provides a motivation for considering ensembles, which
we found quite e�ective when dealing with considered problem. We veri�ed that in all
considered classes of architectures ensemble of 10 networks achieve very good results
of classi�cation classes F as F . Additionally, in some cases they were able to obtain
better performance on false alarms (smaller number of such instances).

Obtained results were satisfactory for the industrial partner, ensuring signi�cant
economical savings. While it is not a part of present research, we noticed that obtained
architectures and learning procedures can achieve very good results on some other
data sets, however due to limited space of this paper, we decided to not present these
results here.

In the future research we would like to �nd an e�cient way to add newly collected
observations to already trained network. In predictive maintenance setting, new data
is generated every minute and so it is desirable to develop a self-learning model, which
does not involve training the whole network. Such algorithms may result in models
reaching even better accuracy, being resistant to small changes in the production
process.

5. Acknowledgements

Presented work was undertaken within the framework of a research project �Deep
learning in distributed system of energetically e�cient mobile devices to optimize
the machines exploitation process� within the Measure 1.1.1. �Industrial research
and development works by companies�, co-�nanced by the European Union from the
European Regional Development Fund under the Smart Growth Operational Pro-
gramme 2014-2020. Financial support of the above institutions and programs is
gratefully acknowledged.

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

20

6. References

[1] Rosmaini A., Shahrul K., An overview of time-based and condition-based main-
tenance in industrial application. Computers & Industrial Engineering, 2012, 63
(1), pp. 135�149.

[2] Jardine A.K.S., Lin D., Banjevic D., A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mechanical systems and
signal processing, 2006, 20 (7), pp. 1483�1510.

[3] Compare M., Zio E., Predictive maintenance by risk sensitive particle �ltering.
IEEE Transactions on Reliability, 2014, 63 (1), pp. 134�143.

[4] Uysal H., A genetic programming approach to classi�cation problems. University
College Dublin Dublin, Ireland, 2013.

[5] Bishop C.M., Pattern recognition and machine learning. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[6] Mather P., Tso B., Classi�cation methods for remotely sensed data. CRC Press,
Boca Raton, 2016.

[7] Aggarwal C.C., Data classi�cation: algorithms and applications. Chap-man |&
Hall/CRC, 1st edition, 2014.

[8] Krizhevsky A., Sutskever I., Hinton G.E., Imagenet classi�cation with deep con-
volutional neural networks. InAdvances in neural information processing systems,
2012, pp. 1097�1105.

[9] Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision, 2015, 115 (3), pp.
211�252.

[10] He K., Zhang X., Ren S., Sun J.. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770�778.

[11] Susto G.A., Schirru A., Pampuri S., McLoone S., Beghi A., Machine learning
for predictive maintenance: A multiple classi�er approach. IEEE Transactions
on Industrial Informatics, 2015, 11 (3), pp. 812�820, 2015.

[12] Breiman L., Random forests. Machine learning, 2001, 45 (1), pp. 5�32.

[13] Che T., Guestrin C., Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data
mining, 2016, pp. 785�794.

[14] Hubel D.H., Wiesel T.N., Receptive �elds and functional architecture of monkey
striate cortex. The Journal of physiology, 1968, 195 (1), pp. 215�243.

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

F
I R

 S
 T

V I

E W

21

[15] LeCun Y., Bengio Y., et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 1995, 3361 (10), pp.
1-14.

[16] Yang J., Nguyen M.N., San P.P., Li X., Krishnaswamy S., Deep convolutional
neural networks on multichannel time series for human activity recognition. IJ-
CAI, 2015, pp. 3995�4001.

[17] Fukushima, K., Miyake S., Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition. Competition and cooperation in
neural nets, 1982, pp. 267�285.

[18] Io�e S., Szegedy C., Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine
Learning, 2015, pp. 448�456.

[19] Courville A., Goodfellow I., Bengio Y., Deep Learning. MIT Press, 2016.

[20] Zeiler M.D., Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[21] He K., Zhang X., Ren S., Sun J., Delving deep into recti�ers: Surpassing human-
level performance on imagenet classi�cation. In Proceedings of the IEEE inter-
national conference on computer vision, 2015, pp. 1026�1034.

[22] Caruana R., Niculescu-Mizil A., An empirical comparison of supervised learn-
ing algorithms. In Proceedings of the 23rd international conference on Machine
learning, 2006, pp. 161�168.

Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

