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Abstract  

A fluid interacts with every solid object that is submerged in its flow. In this paper, the dynamic instability of 

elastic solid is modeled and analyzed based on the benchmark model. It is caused by a continuous stream of 

vortices (known as von Kármán vortex street). In the presented approach, prerequisites are calculated to meet 
the necessary conditions for this phenomenon to occur. The main objective of this study is to determine the 

influence of different Poisson ratios on the intensity of a solid body’s deflection. In the first part, governing 

equations are presented. The following part describes the model domain as well as assumed parameters with 
chosen values explanation. The third part presents simulation specific information – mesh and applied options. 

The conclusion and possible real-life applications are preceded by obtained results. 
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1. Introduction 

The main problems in aeroelasticity are divergence, control reversal, and flutter. The last 

of them is also the most destructive one. There are some well-known examples of design 

failure due to dynamic instability in fluid flow, with Tacoma Narrows Bridge being one 

of the biggest. For that reason, this phenomenon is the topic of scientific research for 

almost 100 years [1]. In such a long period, manufacturing technologies and materials 

were enhanced or new ones were invented. In current research the behavior of new 

structures made of new materials in the fluid flow is modeled and analyzed [2-4]. 

The scientific interest in metamaterials is growing in recent years [3-5]. One group of 

them are auxetics – materials with negative Poisson’s ratio (NPR). They were the subject 

of scientific investigations carried since 1978. In 1987, Lakes [6] presented the first foam 

structure that shows this behavior and this process is still under development [7]. 

The most common auxetic metamaterials are arranged in foams or cellular structures. 

One of their key property is low density and the ability to dissipate energy. Damping 

properties of beams with auxetic core were investigated by Strek et. al. [8]. In this study, 

different loading conditions and parameters were applied. Conclusions implied that 

materials with a lower value of Poisson’s ratio have higher mechanical impedance. The 

higher damping properties of auxetic foams were proven by Scarpa [9]. In their study, 

authors compared the damping properties of conventional polyurethane-polyethylene 

foam to one with a negative Poisson’s ratio. The results showed that auxetic foams are 

good vibration dampers both in low and high frequencies. These conclusions were 
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confirmed in further work [10-11]. In the first paper, the auxetic structure (anti-tetrachiral) 

showed higher damping properties than conventional material. Authors of the second 

papers modeled vibrations of three-dimensional auxetic structures in a wider range of 

frequencies. The higher values for vibration transmission loss were observed for materials 

with negative Poisson’s ratio, but the specific value depended on characteristic dimensions 

of a single cell in the structure. 

The main objective of this paper is to investigate the influence of different values of 

Poisson’s ratio on material deformations induced by fluid flow. For comparison purposes, 

the well-known benchmark model was used.  

2. Governing equations 

In our study, we created two domains that interact with each other. One of them is the 

Newtonian fluid domain, in which incompressible flow occurs – denoted as Ω𝑓. The other 

one is elastic solid – denoted as Ω𝑠. The following equation defines part of the boundary, 

where fluid interacts with solid: 

 

Γ0 = Ω𝑓 ∩ Ω𝑠
̅̅ ̅.                                                       (1) 

 

The time is described as 𝑡 ∈ [0, 𝑇].  

2.1. Solid mechanics 

As mentioned previously, the solid was treated as an elastic and deformable object. Its 

state, in a given moment, is defined by displacement 𝑢𝑠 with the corresponding velocity 

field 𝑣𝑠 =
𝛿𝑢𝑠

𝛿𝑡
. The basic equilibrium equation in Ω𝑠(𝑡) is shown as: 

 

𝜌𝑠 (
𝑑2𝑢𝑠

𝑑𝑡2 ) + 𝜌𝑠(∇𝑣𝑠)𝑣𝑠 = 𝑑𝑖𝑣(𝜎𝑠) + 𝜌𝑠𝑔.                          (2) 

 

The equation (2) can be rewritten concerning the initial state (or another fixed one) and its 

form is as follows:  

 

𝜌𝑠 (
𝑑2𝑢𝑠

𝑑𝑡2 ) = 𝑑𝑖𝑣(𝐽𝜎𝑠𝐹−𝑇) + 𝜌𝑠𝑔,                                    (3) 

 

where the deformation gradient vector is denoted as 𝐹 = 𝐼 + ∇𝑢𝑠. To fully specify 

material Cauchy stress tensor 𝜎𝑠 is given by law for hyperelastic material (St. Venant-

Kirchoff model formulation) and can be written in form of equation: 

 

𝜎𝑠 =
1

𝐽
𝐹(𝜆𝑠(𝑟𝐸)𝐼 + 2𝜇𝑠𝐸)𝐹𝑇 .                                      (4) 

 

The initial (undeformed) structure has density described as 𝜌𝑠. The material is defined by 

Young modulus E and its Poisson’s ratio 𝑣𝑠 [13,14]. 



Vibrations in Physical Systems 2020, 31, 2020301  (3 of 11) 

2.2. Fluid mechanics 

As stated above, we assumed the fluid to be Newtonian and flow to be incompressible. 

The state of flow, at any given time, is described by its velocity 𝑢𝑓 and pressure fields 𝑝𝑓: 

𝜌𝑓
𝑑𝑢𝑓

𝑑𝑡
+ 𝜌𝑓(∇𝑢𝑓)𝑢𝑓 = 𝑑𝑖𝑣 𝜎𝑓 ,

𝑑𝑖𝑣 𝜎𝑓 = 0.
                                     (5)            

Equation (5) is the general balance equation for this problem in Ω𝑠(𝑡). The constitutive 

equation for the material is given by following equation: 

𝜎𝑓 = −𝑝𝑓𝐼 + 𝜌𝑓𝜈𝑓(∇𝑢𝑓 + ∇𝑢𝑓
𝑇).                                    (6) 

The density of the fluid 𝜌𝑓 is assumed constant. The dynamic viscosity is denoted as 𝜈𝑓 

[12-14].  

One of the commonly used parameters used to describe the character of the flow is 

Reynold’s number. It is defined as: 

𝑅𝑒 =
𝑙 𝑢

𝜈𝑑
 ,                                                          (7) 

where l is the characteristic dimension, u is fluid velocity and 𝜈𝑑 is kinematic viscosity. In 

general, the higher the value the more turbulent flow [14]. 

2.3. Fluid-structure interaction conditions 

On the interface between fluid and solid following conditions are required to obtain two-

way coupling. In that situation, fluid flow deforms solid and solid changes fluid domain:  

𝜎𝑓 𝑛 = 𝜎𝑠 𝑛 ,
𝑢𝑓 = 𝑣𝑠 ,                                                       (8) 

where n is the unit vector, normal to the interface Γ0(𝑡). The application of these equations 

ensures no-slip conditions in flow and balance of forces on the interface [10,12]. 

The fluid-structure interaction uses arbitrary Lagrangian-Eulerian (ALE) finite element 

method. The Navier-Stokes equations for viscous, incompressible flow might be written 

in following form:  

�̇� + ∇ ∙ (𝑢 ⊗ 𝑢) + ∇𝑝 −
1

𝑅𝑒
∆𝑢 = 0 .                                (9) 

In Eulerian approach, the velocities are defined regarding fixed computational mesh. 

This description requires accurate definition of boundaries, but allows precise calculation 

of large distortions in fluid motion. Cases with moving boundaries can be solved with 
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ALE approach in which nodes of fluid mesh can move independently of the fluid particles. 

This formulation factors the velocity of boundaries and the fluid mesh 𝑢𝑔 in NS equation: 

 �̇� + ∇ ∙ ((𝑢 − 𝑢𝑔) ⊗ 𝑢) + ∇𝑝 −
1

𝑅𝑒
∆𝑢 = 0                                 (10) 

where 𝒄 = 𝑢 − 𝑢𝑔 is a relative velocity between the material and the mesh. In this 

formulation, mesh acceleration can be neglected [15,16]. 

3. Simulation model 

To simplify three dimensional phenomena, two dimensional model was used. The plane 

strain approximation was used for this model. The displacements in axis perpendicular to 

selected cross-section plane are assumed to be zero. In that case, a normal stress exists in 

addition to the other stress components. This approach is applied for long bodies with 

constant cross-sectional area and when external forces are not acting along perpendicular 

axis. The main disadvantage of this approximation is neglecting stresses and strains near 

the ends of the structure (in perpendicular direction), but computations for middle part of 

object are comparable to three dimensional calculations and exact solution. 

The simulation model consists of an elastic body submerged in fluid. The dimensions 

are based on the benchmark model proposed in [13] and [14]. The origin is assumed at the 

bottom-left corner of the domain. The channel (fluid domain) is 2.5 meters long and 0.41 

meters high. The solid domain has two parts. One of them is a fixed circular structure 

(white object in Fig. 1) with a center at point (0.2 m, 0.2 m). We assume no deformations 

of this object. The elastic plate is another part of the solid domain. Its dimensions are 

shown in figure 2 (structure marked with grey color). The total length of the elastic object 

is equal to 0.35 meters and thickness is 0.02 m. As mentioned earlier, plane strain 

approximation was used. Therefore, the dimension in perpendicular axis was necessary to 

define and value of 1 m were chosen, according to benchmark model [13]. 

 

Figure 1. Dimensions of the computation domain 
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Figure 2. Dimensions of solid domain 

The circular object is positioned with a small offset from the symmetry axis of the 

channel. The reason for such offset is to avoid dependence of the onset of possible 

oscillations on the precision of the computation and to maintain consent with the 

benchmarking model [13]. 

3.1. Properties of materials 

The properties of the fluid and elastic solid are presented in table 1.  

Table 1. The properties of fluid and solid   

Quantity Symbol Unit Value 

Fluid density 𝜌𝑓 kg/m3 1250 

Dynamic viscosity 𝜈𝑑 Pa s
 

1 

Young’s modulus 𝐸 MPa
 

5.6 

Solid density 𝜌𝑠 kg/m3 1150 

The materials are assumed to be similar to glycerin and highly elastic polyurethane. 

One more value is needed to fully define solid material properties – Poisson’s ratio. This 

value is changed in each simulation and is in the range from -0.95 to 0.45 with a step of 

0.05. Such changes allow observing differences in deformations induced by fluid flow. 

3.2. Boundary conditions 

The inflow condition is applied to the left boundary of the channel. The velocity value is 

chosen based on equation (7). The laminar regime of flow is required to observe formation 

on von Karman vortexes, which interacts with structure and causes deformations. 

Additionally, the fluid should have a high viscosity (i.e. glycerin). The characteristic 

dimension in this simulation (used in equation (7)) is the radius of the circular shape. 

Reynold’s number in such simulation should be slightly higher than the upper threshold 

value for von Kármán vortex street (Re = 140 – 160). The velocity U is calculated for a 

value of 200. The fully developed inlet velocity profile is assumed with a mean value of 

U = 2 m/s. It is defined as: 

𝑢𝑓(0, 𝑦) = 1.5𝑈
𝑦(𝐻−𝑦)

(
𝐻

2
)

2 𝜃(𝑡),                                              (9) 
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where y is the position concerning the origin, H is the height of the channel (0.41 m) and 

𝜃 is the function shown in figure 3. This function is used to initialize and develop flow in 

the first second of the simulation. 

 

Figure 3. Values of function 𝜃(𝑡) 

The outflow boundary is assumed to be one on the right side of the channel. In our 

simulation, the pressure at outflow was assumed to be 0 and no backflow was allowed. On 

boundary Γ0(𝑡), the no-slip condition was applied. 

3.3. Mesh and simulation settings 

The simulations were conducted in Comsol Multiphysics. The mesh is divided into three 

parts as shown in figure 4. The mesh consists of 5372 elements (3890 triangle elements 

and 1482 quad elements). The minimum element quality is 0.3814 and the average element 

quality is equal to 0.9056.  

 

Figure 4. Mesh used for finite element method 

The most left part of the mesh is the region, where flow around circular objects can be 

observed and the velocity profile is shaped. In the middle part, the mesh is finer and refined 

around the end of the plate (point A in figure 2). It was necessary to obtain a proper 

mapping of moving mesh in a fully implicit ALE formulation of mesh deformation. The 
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most right part is less refined and more coarse. Additional boundary layers were added 

around an obstacle and at both horizontal channel walls.  

The simulation time is in the range from 0 to 5 seconds, as for all values of Poisson’s 

ratio at least one full period of vibration was observed. The time-step is dynamic, and 

output values are taken in 0.05 s intervals. 

4. Results 

The displacements in the X and Y axis of point A (Fig. 2) for different values of Poisson’s 

ratio are shown in figures 5–9. 

 

Figure 5. Point A displacement, Poisson’s ratio: 0.45 

 

Figure 6. Point A displacement, Poisson’s ratio: 0.35 

 

Figure 7. Point A displacement, Poisson’s ratio: 0.0 
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Figure 8. Point A displacement, Poisson’s ratio: -0.75 

 

Figure 9. Point A displacement, Poisson’s ratio: -0.95 

Figure 10 shows deformations, velocity field, and the von Mises stress in the deformed 

structure for Poisson’s ratio 𝜈 = 0.35. Deformed von Kármán vortex street can be 

observed past the structure and they also affect the flow. 

 

Figure 10. Deformations, velocity field, and the von Mises stress in deformed structure 

for Poisson’s ratio ν = 0.35 in different timeframes. 
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The computed values for other Poisson’s ratios are shown in table 2. All values in 

tables were rounded to 0.01.  

Table 2. The displacement of point A for different Poisson’s ratios 
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-0.95 0.17 9.30 0.10 15.70 0.07 13.20 6.00 

-0.85 1.90 18.80 1.90 35.90 1.30 17.10 5.80 

-0.75 5.50 32.60 5.60 60.70 3.50 26.30 5.80 

-0.65 7.10 37.70 7.00 72.50 4.60 31.10 5.70 

-0.55 7.45 40.00 7.45 76.50 4.90 32.80 5.60 

-0.45 7.45 40.75 7.45 77.65 4.97 33.20 5.60 

-0.35 7.30 40.75 7.35 77.80 4.95 33.65 5.40 

-0.25 7.34 40.50 7.39 78.30 4.93 33.75 5.40 

-0.15 7.35 40.47 7.40 78.47 4.86 33.75 5.40 

-0.1 7.35 40.50 7.40 78.50 4.86 33.65 5.40 

0 7.10 39.80 7.00 78.20 4.80 33.80 5.40 

0.1 7.20 40.05 7.10 78.55 4.90 33.82 5.40 

0.15 7.43 40.20 7.38 78.80 4.95 33.85 5.40 

0.25 7.52 40.22 7.47 78.92 5.02 34.05 5.40 

0.35 7.60 39.94 7.53 78.69 5.10 34.08 5.40 

0.4 7.65 40.85 7.63 78.79 5.13 34.11 5.38 

0.45 7.67 39.63 7.60 78.14 5.15 33.92 5.50 



Vibrations in Physical Systems 2020, 31, 2020301  (10 of 11) 

5. Conclusions 

Presented results of numerical simulation show dependence between Poisson’s ratio of 

material and deformations of the structure. The lowest value of displacement can be 

observed for small values of Poisson’s ratio – values near -1. For those parameters. 

vibrations induced by fluid flow have a slightly higher frequency (about 6.0 Hz). Also. 

periodic oscillations appear after a long time (after about 4 s) than for higher values of 

Poisson's ratio. 

Obtained results clearly show that auxetic structures can successfully decrease 

vibrations in objects exposed to fluid flow around them. The main area of application in 

engineering would be creating airplane wings or rotors with such structure to limit the 

negative effects of vibrations, such as fatigue wear and dynamic loads in these machines. 

In some cases. replacing conventional materials with auxetics can change the frequency 

of vibrations. 
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