PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A Numerical Study of Combined Natural and Marangoni Convection in a Square Cavity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Through the aim of this study, the effects of combined buoyancy-driven flows and thermo capillary flows, which are emerged from temperature differences, on fluid flow and heat transfer numerically investigated with differentially heated side walls in a free surface square cavity. The study has been accomplished with three milestones to achieve the right solutions. For every milestone Navier-Stokes, continuity and energy equations are discretized by using finite volume method and grids with 52 x 52 control volumes. Results are presented Pr=1, Pr=7 and Pr=100. The effect of positive and negative Marangoni number on fluid flow and heat transfer at different Rayleigh number are considered and discussed.
Twórcy
autor
  • Istanbul Technical University, Tuzla, Istanbul, Turkey
autor
  • Istanbul Technical University, Tuzla, Istanbul, Turkey
Bibliografia
  • 1 Behnia, M., Stella, F., & Guj, G. 1995. A numerical study of three dimensional combined buoyancy and thermocapillary convection, International Journal of Multiphase Flow, 21(3): 529-542.
  • 2 Bergman, T.L. & Ramadhyani, S. 1986. Combined buoyancy and thermocapillary driven convection in open square cavi-ties. Journal of Numerical Heat Transfer, 9: 441-451.
  • 3 Bergman, T.L. and Keller, J.R., 1988. Combined Buoyancy, Surface Tension Flow in Liquid Metals, Numerical Heat Transfer, 13, 49-63.
  • 4 Davis, G.D.V., 1983a, Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution, International Journal for Numerical Methods in Fluids, 3, 249-264.
  • 5 Davis, G.D.V., 1983b, Natural Convection of Air in a Square Cavity: A Comprasion Exercise, International Journal for Numerical Methods in Fluids, 3, 227-248.
  • 6 Faghri, A. and Zhang, Y., 2006. Transport phenomena in mul-tiphase systems. Academic Press, London.
  • 7 Grau, F.X., Valencia, L., Fabregat, A., Pallares, J. and Cuesta I., 2005. Modelization and simulation of the fluid dynamics of the fuel in sunken tankers and of the dispersion of the fuel spill, Symposium on Marine Accidental Oil Spills, Vi-go, Spain, July 13-16.
  • 8 Hortman, M. and Peric, M., 1990. Finite volume multigrid pre-diction of laminar narutal convection: bench-mark solution, International Journal for Numerical Methods in Fluids, 11, 189-207.
  • 9 Oro, J.M.F., Morros, C.S. and Diaz, K.M.A., 2006. Numerical simulation of the fuel oil cooling process in a wrecked ship, Journal of Fluid Engineering, 128, 1390-1393.
  • 10 Pallares J., Cuesta I. and Grau F.X., 2004. Numerical simula-tion of the fuel oil cooling in the sunken prestige tanker. The ASME-ZSIS International Thermal Science Seminar II, Bled, Slovenia, June 13-16, 439-445.
  • 11 Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow, Hemissphere Publishing Corporation, Washington D.C.
  • 12 Segerra-Perez, C.D., Olivia, A., Trias, X., Lehmkuhl, O. and Capdevila, A., 2007. Numerical simulation of thermal and fluid dynamic behavior of fuel oil in sunken ships, Sympo-sium on Marine Accidental Oil Spills, Vigo, Spain, June 5-8, 31.
  • 13 Smith, M.K. & Davis, S.H. 1983. Instabilities of dynamic thermocapillary liquid layers, part 1. Convective instabili-ties. Journal of Fluid Mechanics, 132: 119-144.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c503159a-90a6-4a64-b95e-9e7e736c561d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.