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Abstract. This article concerns the oscillatory behavior of solutions to second-order damped
nonlinear differential equations with a superlinear neutral term. The results are obtained
by a Riccati type transformation as well as by an integral criterion. Examples illustrating
the results are provided and some suggestions for further research are indicated.
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1. INTRODUCTION

This paper deals with the oscillation of solutions to second-order nonlinear differential
equation with a superlinear neutral term and a damping term

z′′(t) + d(t)z′(t) + q(t)xβ(σ(t)) = 0, t ≥ t0 > 0, (1.1)
where z(t) = x(t) + p(t)xα(τ(t)). Throughout this paper, we always assume that
the following conditions are satisfied:
(C1) α and β are the ratios of odd positive integers with α ≥ 1;
(C2) p, q : [t0,∞) → R are continuous functions with p(t) ≥ 1, p(t) 6≡ 1 for large t,

q(t) ≥ 0, and q(t) is not identically zero for large t;
(C3) d : [t0,∞)→ (0,∞) is a continuous function such that

∞∫

t0

exp


−

t∫

t0

d(s)ds


 dt =∞; (1.2)

(C4) τ, σ : [t0,∞)→ R are continuous functions such that σ(t) ≤ τ(t) ≤ t, τ is strictly
increasing, and limt→∞ τ(t) = limt→∞ σ(t) =∞.
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By a solution of equation (1.1), we mean a function x ∈ C ([tx,∞),R) for some
tx ≥ t0 such that z ∈ C2 ([tx,∞),R), and x satisfies (1.1) on [tx,∞). We only consider
those solutions of (1.1) that exist on some half-line [tx,∞) and satisfy the condition

sup {|x(t)| : T ≤ t <∞} > 0 for any T ≥ tx;

and moreover, we tacitly assume that (1.1) possesses such solutions. Such a solution
x(t) of (1.1) is said to be oscillatory if it has arbitrarily large zeros on [tx,∞), i.e.,
for any t1 ∈ [tx,∞) there exists t2 ≥ t1 such that x(t2) = 0; otherwise it is called
nonoscillatory, i.e., if it is eventually positive or eventually negative. Equation (1.1) is
said to be oscillatory if all of its solutions are oscillatory.

The oscillatory behavior of solutions of various classes of second-order neutral
differential equations without damping terms has been a very active area of research
over the years; for recent contributions see, for example, [1–5, 8–14, 16, 19] and the
references contained therein. However, in reviewing the literature, it becomes apparent
that results on the oscillatory behavior of second-order neutral differential equations
with damping terms are relatively scarce; see [6, 7, 15,17,18] for some typical results.
It should be noted that although papers [6,7,15,17,18] deal with second-order neutral
differential equations with a damping term, the results obtained in these papers
except [17, 18] cannot be applied to the case where here p(t) > 1 and/or p(t)→∞ as
t→∞. On the other hand, the results in [17,18] were obtained for the second-order
damped differential equations with a linear neutral term(i.e., α = 1), and so the
results in [17,18] cannot be applied to the equations with a superlinear neutral term
(i.e., α > 1). To the best of our knowledge, there are no results for second-order
differential equations with a superlinear neutral term and a damping term in the
case where p(t) → ∞ as t → ∞, and so, the aim of the present paper is to initiate
the study of the oscillation problem of (1.1) and to provide new results, which can
easily be extended to more general second-order damped differential equations with
a superlinear neutral term to derive more general oscillation results (see Remarks 2.8
and 2.9 below). It should be noted that the results of the present paper can be applied
to the case where p(t) → ∞ as t → ∞ for α > 1, and to the cases where p(t) is
a bounded function and/or p(t)→∞ as t→∞ for α = 1. For these reasons, it is our
belief that the present paper will contribute significantly to the study of oscillatory
behavior of solutions of second-order damped differential equations with a superlinear
neutral term.

2. MAIN RESULTS

In this section, we establish some new criteria for the oscillation of equation (1.1).
It will be convenient to employ the following notations:

g(t) := τ−1(σ(t)), where τ−1 is the inverse function of τ ;

π(t) :=





1, if βα − 1 = 0,
k1, if βα − 1 > 0,
k2t

β
α−1, if βα − 1 < 0,
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where ki (i = 1, 2) are positive real constants, and for any positive function
ξ ∈ C1 ([t0,∞),R)

η(t) := ξ′(t)− ξ(t)d(t)
ξ(t) .

For proving our results we use the additional condition:

(C5) For every positive constant δ, we have

ϕ(t) := 1
p(τ−1(t))

[
1−

(
τ−1(τ−1(t))
τ−1(t)

)2/α
δ

1
α−1

p1/α(τ−1(τ−1(t)))

]
≥ 0

for all sufficiently large t.

Note that if α > 1, this assumption requires limt→∞ p(t) =∞.
Our first oscillation result is the following.

Theorem 2.1. Let conditions (C1)–(C5) and (1.2) hold. If

∞∫

t0

q(s)ϕβ/α(σ(s))ds =∞, (2.1)

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. The proof if x(t) is eventually negative is
similar, so we omit the details of that case here as well as in the remaining proofs in
this paper. It follows from (1.1) that

z′′(t) + d(t)z′(t) = −q(t)xβ(σ(t)) ≤ 0,

i.e.,
z′′(t) + d(t)z′(t) ≤ 0 for t ≥ t1,

which implies 
exp




t∫

t1

d(s)ds


 z′(t)



′

≤ 0 for t ≥ t1.

Thus, exp
(∫ t

t1
d(s)ds

)
z′(t) is nonincreasing and eventually does not change its sign,

say on [t2,∞) for some t2 ≥ t1. Therefore, z′(t) eventually has a fixed sign on [t2,∞),
and so we have one of the following cases:

Case (I ): z′(t) > 0 for t ≥ t2,
Case (II ): z′(t) < 0 for t ≥ t2.
First, we consider case (I). Since z′(t) > 0 for t ≥ t2, from (1.1) we have

z(t) > 0, z′(t) > 0, and z′′(t) ≤ 0 for t ≥ t2,
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and so

z(t) = z(t2) +
t∫

t2

z′(s)ds ≥ (t− t2)z′(t).

From this it follows that for all t ≥ t3 := 2t2,

z(t) ≥ t

2z
′(t) for t ≥ t3. (2.2)

From (2.2) one can easily see that z(t)/t2 is decreasing for t ≥ t3. It follows from
the definition of z that

xα(τ(t)) = 1
p(t) (z(t)− x(t)) ≤ z(t)

p(t) ,

from which and the fact that τ(t) ≤ t is strictly increasing, it is easy to see that

x(τ−1(t)) ≤ z1/α(τ−1(τ−1(t)))
p1/α(τ−1(τ−1(t))) .

Using this in the definition of z, we obtain

xα(t) = 1
p(τ−1(t))

[
z(τ−1(t))− x(τ−1(t))

]

≥ 1
p(τ−1(t))

[
z(τ−1(t))− z1/α(τ−1(τ−1(t)))

p1/α(τ−1(τ−1(t)))

]
.

(2.3)

Since τ(t) ≤ t and τ is strictly increasing, so τ−1 is increasing and t ≤ τ−1(t). Thus,

τ−1(t) ≤ τ−1(τ−1(t)),

and since z(t)/t2 is decreasing, we arrive at
(
τ−1(τ−1(t))

)2
z(τ−1(t))

(τ−1(t))2 ≥ z
(
τ−1(τ−1(t))

)
. (2.4)

Using (2.4) in (2.3), we obtain

xα(t) ≥ 1
p(τ−1(t))

[
z(τ−1(t))−

(
τ−1(τ−1(t))

)2/α

(τ−1(t))2/α
z1/α(τ−1(t))

p1/α(τ−1(τ−1(t)))

]

= z(τ−1(t))
p(τ−1(t))

[
1−

(
τ−1(τ−1(t))
τ−1(t)

)2/α
z

1
α−1(τ−1(t))

p1/α(τ−1(τ−1(t)))

]
.

(2.5)

Since z(t) is positive and increasing for t ≥ t2, there exist t3 ∈ [t2,∞) and a constant
c > 0 such that

z(t) ≥ c for t ≥ t3. (2.6)
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Substituting (2.6) into (2.5) yields

xα(t) ≥ ϕ(t)z(τ−1(t)) for t ≥ t3. (2.7)

Since limt→∞ σ(t) =∞, we can choose t4 ≥ t3 such that σ(t) ≥ t3 for all t ≥ t4. Thus,
it follows from (2.7) that

xα(σ(t)) ≥ ϕ(σ(t))z(τ−1(σ(t))) for t ≥ t4. (2.8)

Using (2.8) in (1.1) gives

z′′(t) + d(t)z′(t) + q(t)ϕβ/α(σ(t))zβ/α(g(t)) ≤ 0 for t ≥ t4. (2.9)

In view of the fact that d(t) > 0 and z′(t) > 0, it follows from (2.9) that

z′′(t) + q(t)ϕβ/α(σ(t))zβ/α(g(t)) ≤ 0.

Integrating from t4 to t yields

z′(t) ≤ z′(t4)− cβ/α
t∫

t4

q(s)ϕβ/α(σ(s))ds→ −∞ as t→∞,

which contradicts the fact that z′(t) is positive.
Next, we consider case (II). Letting u(t) = −z′(t) > 0, it follows from (1.1) that

u′(t) + d(t)u(t) ≥ 0 for t ≥ t2.

Integrating this inequality from t2 to t, we obtain

u(t) ≥ u(t2) exp


−

t∫

t2

d(s)ds


 ,

from which we see that

z′(t) ≤ z′(t2) exp


−

t∫

t2

d(s)ds


 . (2.10)

Integrating (2.10) from t2 to t and taking (1.2) into account, we obtain

z(t) ≤ z(t2) + z′(t2)
t∫

t2

exp


−

s∫

t2

d(u)du


 ds→ −∞ as t→∞,

which contradicts the positivity of z and completes the proof of the theorem.



634 Ercan Tunç and Osman Özdemir

Theorem 2.2. Let conditions (C1)–(C5) and (1.2) hold. If there exists a positive
function ξ ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

t∫

t0

[
ξ(s)q(s)ϕβ/α(σ(s))π(g(s))

(
g(s)
s

)2
− ξ(s)η2(s)

4

]
ds =∞, (2.11)

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0
for t ≥ t1. Then, from Theorem 2.1, z(t) satisfies either case (I) or case (II) for t ≥ t2.
If case (II) holds, proceeding exactly as in the proof of Theorem 2.1, we again obtain
a contradiction to the positivity of z.

Next, we consider case (I). Proceeding as in the proof of Theorem 2.1, we again
arrive at (2.9) for t ≥ t4, which can be written as

z′′(t) + d(t)z′(t) + q(t)ϕβ/α(σ(t))zβ/α−1(g(t))z(g(t)) ≤ 0 (2.12)
for t ≥ t4. Since z′(t) is positive and decreasing on [t2,∞), there exist a constant
c1 > 0 and t3 ≥ t2 such that

z′(t) ≤ c1 for t ≥ t3.

Integrating the last inequality from t3 to t, we obtain

z(t) ≤ bt (2.13)

for t ≥ t3 and for some constant b > 0. In view of (2.6) and (2.13), inequality
(2.12) takes the form

z′′(t) + d(t)z′(t) + q(t)ϕβ/α(σ(t))π(g(t))z(g(t)) ≤ 0 (2.14)

for t ≥ t4. Define the function w(t) by the Riccati substitution

w(t) := ξ(t)z
′(t)
z(t) for t ≥ t4. (2.15)

Clearly, w(t) > 0, and from (2.14) and (2.15), we observe that

w′(t) = ξ′(t)
ξ(t) w(t) + ξ(t)

(
z′′(t)z(t)− (z′(t))2

z2(t)

)

≤ ξ′(t)
ξ(t) w(t) + ξ(t)

z(t)

[
−d(t)z′(t)− q(t)ϕβ/α(σ(t))π(g(t))z(g(t))

]

− 1
ξ(t)w

2(t)

= η(t)w(t)− ξ(t)q(t)ϕβ/α(σ(t))π(g(t))z(g(t))
z(t) − 1

ξ(t)w
2(t).

(2.16)
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Using the fact z(t)/t2 is decreasing, and noting that σ(t) ≤ τ(t) implies τ−1(σ(t)) ≤ t,
we obtain

z
(
τ−1(σ(t))

)

z(t) ≥
(
τ−1(σ(t))

t

)2

=
(
g(t)
t

)2
. (2.17)

Substituting (2.17) into (2.16) gives

w′(t) ≤ η(t)w(t)− ξ(t)q(t)ϕβ/α(σ(t))π(g(t))
(
g(t)
t

)2
− 1
ξ(t)w

2(t). (2.18)

Completing the square with respect to w, it follows from (2.18) that

w′(t) ≤ −ξ(t)q(t)ϕβ/α(σ(t))π(g(t))
(
g(t)
t

)2
+ ξ(t)η2(s)

4 for t ≥ t4.

Integrating the last inequality from t4 to t yields
t∫

t4

[
ξ(s)q(s)ϕβ/α(σ(s))π(g(s))

(
g(s)
s

)2
− ξ(s)η2(s)

4

]
ds < w(t4),

which contradicts (2.11) and completes the proof of the theorem.

From Theorem 2.2, we can establish different conditions for the oscillation of (1.1)
using different choices of ξ(t). For example, letting ξ(t) = 1 and ξ(t) = tγ with γ ≥ 1,
we obtain the following corollaries, respectively.
Corollary 2.3. Let conditions (C1)–(C5) and (1.2) hold. If

lim sup
t→∞

t∫

t0

[
q(s)ϕβ/α(σ(s))π(g(s))

(
g(s)
s

)2
− d2(s)

4

]
ds =∞,

then equation (1.1) is oscillatory.
Corollary 2.4. Let conditions (C1)–(C5) and (1.2) hold. If

lim sup
t→∞

t∫

t0

[
sγ−2q(s)ϕβ/α(σ(s))π(g(s))g2(s)− [(sγ)′ − sγd(s)]2

4sγ

]
ds =∞, (2.19)

then equation (1.1) is oscillatory.
Next, we present a new oscillation result in which we assume that η(t) ≤ 0.

Theorem 2.5. Let conditions (C1)–(C5) and (1.2) hold. If there exists a positive
function ξ ∈ C1 ([t0,∞),R) such that η(t) ≤ 0 for t ≥ t0, and

lim sup
t→∞

t∫

t0

ξ(s)q(s)ϕβ/α(σ(s))π(g(s))
(
g(s)
s

)2
ds =∞, (2.20)

then equation (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then, from Theorem 2.1, z(t) satisfies either
case (I) or case (II) for t ≥ t2. If case (II) holds, proceeding exactly as in the proof of
Theorem 2.1, we again obtain a contradiction to the positivity of z.

Next, we consider case (I). Proceeding as in the proof of Theorem 2.2, we again
arrive at (2.18) for t ≥ t4. Since η(t) ≤ 0 and w(t) > 0, inequality (2.18) can be
written as

w′(t) ≤ −ξ(t)q(t)ϕβ/α(σ(t))π(g(t))
(
g(t)
t

)2
for t ≥ t4.

Integrating the last inequality from t4 to t gives
t∫

t4

ξ(s)q(s)ϕβ/α(σ(s))π(g(s))
(
g(s)
s

)2
ds < w(t4),

which contradicts (2.20) and completes the proof of the theorem.

We conclude this paper with two examples and remarks to illustrate our results.
The first example is concerned with the equation with superlinear neutral term in
the case where p(t) → ∞ as t → ∞, and the second example is concerned with the
equation with linear neutral term in the case where p is a constant function.

Example 2.6. Consider the differential equation with a superlinear neutral term and
a damping term

z′′(t) + 1
t3
z′(t) + t

2x
5
(
t

4

)
= 0, t ≥ 1, (2.21)

with
z(t) = x(t) + tx5

(
t

2

)
.

Here p(t) = t, d(t) = 1/t3, q(t) = t/2, τ(t) = t/2, α = 5, β = 5, and σ(t) = t/4. Then,
it is easy to see that conditions (C1)–(C5) and (1.2) hold,

τ−1(t) = 2t, τ−1(τ−1(t)) = 4t, g(t) = t/2,

and
ϕ(t) = 1

2t

[
1− 22/5

δ4/5(4t)1/5

]
.

Thus, it follows from (2.1) that
∞∫

t0

q(s)ϕβ/α(σ(s))ds =
∞∫

1

[
1− 22/5

δ4/5s1/5

]
ds =∞,

i.e., condition (2.1) holds. Thus, all conditions of Theorem 2.1 hold. Therefore,
by Theorem 2.1, equation (2.21) is oscillatory.
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Example 2.7. Consider the differential equation with a linear neutral term and
a damping term

z′′(t) + 1
t2
z′(t) + t2x3

(
t

8

)
= 0, t ≥ 1, (2.22)

with
z(t) = x(t) + 32x

(
t

4

)
.

Here α = 1, β = 3, p(t) = 32, d(t) = 1/t2, q(t) = t2, τ(t) = t/4, and σ(t) = t/8. Then,
it is easy to see that conditions (C1)–(C5) and (1.2) hold,

τ−1(t) = 4t, τ−1(τ−1(t)) = 16t, g(t) = t/2 and ϕ(t) = 1/64.

With ξ(t) = t, condition (2.19) becomes

lim sup
t→∞

t∫

t0

[
sγ−2q(s)ϕβ/α(σ(s))π(g(s))g2(s)− [(sγ)′ − sγd(s)]2

4sγ

]
ds

= lim sup
t→∞

t∫

1

[
k1
220 s

3 − (s− 1)2

4s3

]
ds =∞,

i.e., condition (2.19) holds. Thus, all conditions of Corollary 2.4 hold. Therefore,
by Corollary 2.4, equation (2.22) is oscillatory.
Remark 2.8. The results of this paper can be easily extended to the second-order
nonlinear differential equation with a superlinear neutral term and a damping term

(a(t)z′(t))′ + d(t)z′(t) + q(t)xβ(σ(t)) = 0, t ≥ t0 > 0,

under the condition
∞∫

t0

1
a(t) exp


−

t∫

t0

d(s)/a(s)ds


 dt =∞,

where a ∈ C ([t0,∞), (0,∞)), z(t) = x(t) + p(t)xα(τ(t)), and the other functions and
constants α and β in the equation are defined as in this paper.
Remark 2.9. The results of this paper can be extended to the second-order nonlinear
differential equation with a superlinear neutral term and a damping term

(a(t)(z′(t))α)′ + d(t)(z′(t))α + q(t)f(t, x(σ(t)) = 0, t ≥ t0 > 0,

under the condition

∞∫

t0

1
a1/α(t)


exp


−

t∫

t0

d(s)
a(s)ds






1/α

dt =∞,
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where a ∈ C ([t0,∞), (0,∞)), z(t) = x(t) + p(t)xα(τ(t)), f(t, u) : [t0,∞)× R→ R is
a continuous function such that uf(t, u) > 0 for all u 6= 0 and there exists a positive
constant M such that

f(t, u)/uβ ≥M for u 6= 0,

and the other functions and constants α and β in the equation are defined as in this
paper.

Remark 2.10. It would also be of interest to study equation (1.1) for the case where
p(t)→ −∞ as t→ −∞.
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