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Abstract 
 

The paper presents a system which to make proper poker decision in situations provided by end user via image 

of the online poker table. The system provides feedback and reasoning behind decision made. The main goal is 

to minimize influences of errors and unwanted factors on each step so final decision could be accurate and useful 

in as many cases as possible. The idea is to use softcomputing technologies as neural networks for image recognition 

and expert system for decision making process. The system -  able to parse poker table image - could be used 

by poker player for self-study on example on his/her own past in-game situations. Image is screenshot of the 

interface that is provided by online poker room to a player, so all information available to a player will also be 

available for further processing. The proposed solution can be an essential tool for the monitoring and verification 

of card game rules systems and to point the incorrect or illegal situations based on video data. 

 

1. Introduction 

The aim of this work is to check if it is possible to 

utilize professional poker player knowledge to 

provide automatic feedback about Texas Hold’em 

game situation. Seems it is possible to develop a 

system which makes proper poker decision in 

situations provided by end user via image of the 

online poker table. What is more such system would 

have to provide feedback and reasoning behind 

decision made. The main goal is to minimize 

influences of errors and unwanted factors on each 

step so final decision could be accurate and useful in 

as many cases as possible. The idea is to use 

softcomputing technologies as neural networks for 

image recognition and expert system for decision 

making process [5],[1]. 

Mentioned system could be used by poker player for 

self-study on example on his/her own past in-game 

situations. Such application should to be able to parse 

poker table image. Image is screenshot of the interface 

that is provided by online poker room to a player, so 

all information available to a player will also be 

available for further processing. These information 

have to be gathered from image. This is where first 

problem appears – image recognition. Unnecessary 

data should be removed so only important 

information will be left. The idea is to use neural 

networks and check whether one can be trained to 

recognize important elements properly. Because of 

expert knowledge utilization there have to be a way for 

introducing it to the system. This is where second 

problem appears – performing  automatic reasoning 

according to knowledge provided. Expert systems 

were already successfully used in medicine and other 

areas where expert knowledge could be gathered for 

performing decision in automatic way at some level. 

This is why the solution will be to develop the 

expert system for solving mentioned problem. It will 

be used for coming up with a proper decision 

according to rules provided. As mentioned before in 

most cases decision in poker game cannot be 

ultimately wrong or right. Because of that expert 

knowledge will be treated as reference to output 

provided. The measurements will be provided to help 

to answer important questions: How well developed 

rules could reflect expert knowledge? How credible 

such system could become for other poker players? 

Finally system will have to provide end user 

interface where poker table images and strategy can 

be provided and after processing output is presented 

to user. Such output will have to include decision 

and justification behind it, so user could understand 

experts reasoning [6]. 

2. System modules 

The application will be split into modules in a way that 

each module will have one responsibility. Figure 1 
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presents overall look on how those modules will 

interfere with each other. 

 

 

Figure 1. Application data flow diagram 

 

In the first step poker table image will be provided as 

the application input. First module to process it will 

be image parser. At that point image will be split into 

pieces, so only important parts that will be used in 

further recognition are left. Next, those small images 

will be processed by image recognition module. At 

that step all information held by images provided 

will be extracted to data form. This will be done 

via multilayer perceptron when necessary and some 

lighter custom solutions when possible. After that 

extracted data will be delivered  to information 

processing module where  it will be converted to a 

form where all unnecessary information is dropped and 

only data essential for decision making process is left. 

These information will be directly inserted to expert 

system module where decision process will take 

place. However in order to perform a decision 

process firstly a strategy in form of rules have to 

be provided. To acquire a strategy in required  form 

another  process have to take place. Poker expert will 

be questioned about his strategy. At that point set of 

points describing how the game should be played 

according to expert will be created. Further those 

points will have to be translated to rule form 

understood by expert system. With rules provided 

expert system will be performing backward chaining 

trying to prove raise decision for every poker table 

image provided. If  system  succeeds  to prove raise,  

then  set of rules proven during backward chaining 

will be displayed to end user along with final raise 

decision. In other case, when system won’t be able 

to prove raise by using rules provided it will 

automatically assume that player should fold and 

display according information to end user [2]. 

 

 

2.1. Image parser 

After providing poker image to the system the first step 

is to cut out only important parts of it. This is done in 

image parser module. Information about what 

information is important was acquired via interview 

with poker expert. During it he was questioned about 

what he looks at the table while making a decision. 

Conclusion was which elements have to be extracted 

to be able to get full necessary knowledge from them. 

Figure 2 presents an example poker table with marked 

essential parts. 

 

 

Figure 2. Poker table image - essential parts marked 

 

First important part is the fold button (marked by 

white box). It indicates possibility to fold which is 

always available where person playing is to make a 

decision. What is more it is available only then, so it’s 

appearance could be used as a validation that a proper 

image with decision pending have been provided to the 

system. Second thing are player cards (marked by red 

box). This is without a doubt part providing essential 

information for further decision making process. 

Because whole card images are not needed only a 

small square containing both cards figures and suits is 

cut out. Next important thing to track on poker table 

is dealer button. Its positions says who is the dealer 

in current hand, but also much more information is 

acquired basing on it. On the image above green boxes 

marks spots where button will appear if corresponding 

player is a dealer. To avoid unnecessary increasing of 

images those six spots are cut out and merged to a 

single image before further processing. Undoubtedly 

one of more important thing is to know amount of each 

player’s chips. However there are two spots for each 

player that needs to be combined in order to acquire 

that information. First is under each player’s name and 

second near his/her avatar on the table (both spots 

marked with grey box for each player). That is because 

when someone makes a bet its amount is instantly 

subtracted from value displaying under his/her name 

while not being in pot yet. This value is visualized 
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by chips stack and corresponding number near the 

player. Information about chips we have can be read 

from spot marked with blue boxes. In that case there 

is also need for reading spot on the table even we are 

always before making any decision. That is because 

there is a possibility of us being at blind position. 

When that’s the case the blind value is displayed in 

same manner as a bet. Next we need to check position 

of cards near each of our opponents. If they are near 

one it means he/she is still playing current hand, 

otherwise not. For that a spot marked with yellow 

box is cut out for each opponent. Another interesting 

spot is each opponent border colour (marked with 

brown boxes). That is to be used for further 

application tuning. Poker software allows for 

marking opponents with colours and notes so colours 

can correspond to player evaluation poker expert 

made. Such information could surely affect final 

decision. Last important information is to know how 

many players are left at the table. This one can be 

simply acquired by checking for each opponent if 

his/her avatar is displaying in specific spot at the 

table. For that spot where player avatar appears is cut 

out for each opponent [5]. 

2.2. Image recognition 

It was decided to recognize this information using 

neural networks because images contain different 

colours (unlike number of chips for example) and 

they have limited domain, so it will be easier to teach 

the network. Recognizing an image using artificial 

neural networks forced preprocessing to be 

considered as the process of learning is quite long. In 

order to make it shorter, but still reliable, neural 

network teaching user interface was created. It 

allowed not only setting network parameters but also 

specify image scaling and to convert image to pure 

black and white or grayscale. Thanks to created UI 

decision what to do with the particular type of the 

image (card figures, colours or dealer position) can be 

put on hold till network teaching phase because 

everything can be changed on the fly. Under the hood 

there is a teaching module that handles this process. 

It makes necessary image conversions allowed by the 

UI, then converts such data to flattened array of 

doubles (numbers from range [0.0, 1.0]). The array 

consists of normalized, serialized RGB values. Figure 

3. describes process of acquiring such data structure. 

The flattened array of the image is used as input to the 

neural network. The chosen neural network is 

multilayer perceptron (MLP) with back propagation 

learning method, as the outcome of the images was 

known and it was possible to specify the output of 

corresponded input. Back propagation with momentum 

was used in order to enhance the neural network by 

avoiding oscillation problem (when the error 

surface has a very narrow minimum area). 

 

 

Figure 3. Image to flattened array conversion 

 

Neural networks used consist of three layers: input 

layer, hidden layer and output layer. In the input layer 

number of neurons is equal to number of elements in 

flattened array, so it is dependent on provided image 

size. Because image size vary on scaling parameter 

number of input layer neurons will change during 

testing. Output layer has different values depends on 

type of the image - if this is image that contains card 

figure, it has 4 neurons, as the figure you can describe 

binary in 4 bits (there are 13 values from 2 to Ace. 

Analogically card suits and dealer button position have 

respectively 2 and 3 output neurons. Finally three 

MLP were used: one for card figure recognition, 

one for card suit recognition and one for dealer 

position recognition. All network configuration was 

same – with sigmoid activation function - in each case 

with exception of number of neurons. For network 

teaching process group of tables selected in a way 

that every card figure from 2 to Ace, every card suit 

within spades, clubs, diamonds and hearts and every 

dealer position appear at least once within them . That 

means as for the cards there was no requirement that 

every of 52 different cards must appear. It is because 

card is not considered as a whole but as the set of two 

independent information: suit and figure. Also 

because card figures were decided to be converted 

to black and white during preprocessing there is no 

reason of having each figure image in each possible 

colour. To be sure enough within samples that are 

provided in final set each card figure appears at least 

twice in at least two different suits – conversion to 

black and white may not produce exactly same 

image for different colours on pixel level. Final 

teaching set consisted of 44 poker table images, with 

two cards on each one giving a total of 88 card figure, 

88 card suit and 44 dealer position samples. For each 

of recognized types data set is created. Such data set 
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consist of number of rows equal to number of samples 

provided. Each row consist of flattened image array 

and output is should provide.  It is fed along with 

teaching parameters to MLP and train function is 

invoked. During its execution MLP iterates over data 

set and updates weights between each neuron layer 

accordingly to anticipated results provided in each 

data set row. Exact teaching parameters used were 

determined by research [3]. 

Table 1: Output of recognition 

Recognized 

information 

Value 

Figure of first 

and second card 

2, 3, 4, 5, 6, 7, 8, 9, T, J, Q, K, A, 

where T=10, J=Jack, K=King, A=Ace 

Suit of first 

and second card 

h, d, s, c, where h=Hearts, d=Diamonds, 

s=Spades, c=Clubs 

Dealer button 

position 

integer within range [1,6] 

2.3. Information processing 

After all operations of image recognition module are 

done we are left with simple objects containing all 

gathered data in variables, so there is no need for 

further usage of images. This is the point where these 

information needs to be processed within 

information processing module. The reason for this is 

that raw data in most cases can be compressed, for 

example information about suits of first and second 

card are useless by themselves. The only thing that is 

important while making a decision is whether those 

suits are the same or not (if our cards are suited or not). 

After consultation with expert in this area list of 

information that has to be extracted from gathered data 

was created.  

Data delivered to module: is fold button available 

(Boolean value), dealer position (1 to 6 numeric 

value), number of players (3 to 6 numeric value), first 

card figure (text value), first card suit (text value), 

second card figure (text value), second card suit (text 

value), total chips for each player (6 element list of 

numeric values), chips on table for each player (6 

element list of numeric values), opponent border 

colour (6 element list of textual values). 

By using information provided various important 

measures are calculated. Final output information is: 

player position, first raise position, player stack in big 

blinds, effective stack in big blinds, higher card figure, 

lower card figure, are cards suited, border rating, 

number of players, number of raisers, number of 

limpers [4]. 

Player position is represented by number from 1 to 6. It 

is assumed that person on Big Blind (2 places 

clockwise from dealer position) is on position 6 and 

number decreases while moving counter clockwise. 

When number of players decreases positions start to 

disappear from lowest ones so for example when there 

are only 3 players left the positions are 4, 5 and 6. 

To calculate player stack in big blinds player stack 

have to be divided by value of Big Blind with standard 

rounding (example: stack = 850, big blind = 200, stack 

in bb = 4). Result value is player stack in big blinds. 

To calculate effective stack at first each stack have 

to be calculated (player and opponents) in big blinds. 

This is done same way as calculation of player stack in 

big blinds but this time for each opponent. When each 

stack is expressed in big blinds formula have to be 

calculated: Min(player stack, Max(opponents left in 

play stacks)). So at first only opponents that are still 

in play (are still to move or already lipped or raised) 

have to be checked and highest stack value in big 

blinds  have to be taken. Then it have to be 

compared to player stack in big blinds. Smaller of 

those two values is effective stack, it represent how 

much player can lose if he/she will play this hand. 

To calculate those two both figures that were read from 

table have to be compared to each other. The higher 

one is returned as higher card figure and lower one as 

Lower card figure. Possible figures from lowest to 

highest are: 2, 3, 4, 5, 6, 7, 8, 9, T, J, Q, K and A, where 

T is ten, J is Jack, Q is Queen, K is King and A is Ace. 

In case when both card figures are same for example 

7 and 7 there is no difference which card will be 

returned as higher and lower. 

To tell if cards are suited suits of two cards that player 

got have to be compared. If they are the same true is 

returned, otherwise false [4]. 

To calculate border rating border colours that were 

read are mapped to player rating. Currently 

following ratings are used: Random player, Regular 

player, Weak limper and Good limper. Borders are 

mapped in following manner: no label, yellow, black, 

blue, red, pink, light orange – Random, orange, lime, 

green, cyan, dark blue, white, – Regular, purple – Good 

limper, grey – Weak limper. 

To calculate number of limpers/raisers firstly chips 

lying on table next to each opponent that already 

made action and haven’t folded have to be looked up. If 

that amount is same as value of big blind it means 

that such person is a limper and if this amount is 

greater than value of big blind then this player is 

considered to be a raiser. After it both number of 

raisers and number of limpers are counted. 

If some opponent raised before we were to make a 

decision, only information needed is first raise 

position, even if there is more than one raiser. For 

each player that moves before us the amount of chips 

on table is checked. This is done from earliest to 

latest position, if someone is detected to be a raiser – 

his/her amount of chips on table is greater than BB 

current opponent position is returned. In case of 
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number of players there is no need for any conversion, 

value is forwarded further as it came [5]. 

2.4. Expert system 

Expert system was used as a solution for making a 

decision at poker table. Because no solutions that 

suited application specific needs in 100% decision was 

made to develop custom expert system engine. This 

engine is slightly simplified but not closed for 

extending. In poker games that are considered within 

this work players will fold much more often than 

raise. Because of that the easiest way to develop 

strategy is to specify when player should raise and 

assuming than he/she should fold in every other 

situation. By doing that knowledge base can be 

greatly optimized. It can consist of only rules that 

either have raise decision as their consequent or that 

can be used as a part of a chain for proving it. 

Regarding to thesis limitations decision is binary – 

player either has to fold or go all in. According to that 

hypothesis was made that player should go all in and 

engines will try to prove it. In other words engine 

have a goal and it will try to achieve. That analysis 

resulted in choosing backward chaining as it is goal-

driven reasoning [5] as mechanism which will be 

used within engine. After engine finishes its work 

it gives information if it was able to prove 

hypothesis with rules provided along with textual 

information on rules used in case of success. 

Whole knowledge base is represented by list of rules. 

Each rule can be logically divided into IF and THEN 

parts. On implementation level THEN is represented 

as single fact object and IF part is list of such facts. 

THEN - the consequent is an action which is 

executed when it’s IF part – the antecedents list is 

proven. As was mentioned before my expert system 

is slightly simplified and because of that there is 

currently no support for OR statement and negations 

in Antecedent - only AND statement is supported. In 

other words all facts that are on Antecedents list have 

to be proven true in order to action to be fired. 

Knowledge base are stored in *.rgp files in textual 

form. Table 2 below presents part of example rgp file. 

Table 2: Example rules within rgp file 

1 Fact: Bubble R1; Number of players=3, 

Number of raisers 1, Number of limpers 0 

2 Raise; Pb FTA Ps9+BB, Player position UTG,A7s+ 

3 Raise; Pb FTA Ps9+BB, Player position UTG,ATo+ 

 

Database is a simple list of facts that are true. In this 

system case this list is only filled once before trying 

to prove hypothesis and not modified afterwards. This 

is because of using backward chaining method which 

is not modifying database during execution. This is 

also where a concept of mine called Knowledge 

scheme was introduced. After questioning expert it 

came out that simply inserting processed information 

to database might not be a good idea. It is because 

exact information is not always useful for the expert. 

For example there is no difference whether player 

have 9, 10, 11 or more big blinds, the only thing 

that matters is that he/she have 9 or more. More 

specific information will not have impact on final 

decision. That is the reason why small sub-module 

was introduced in process of insertion of knowledge to 

database. It allows user to provide filter – knowledge 

scheme. This module will not insert information 

provided directly to database but process it 

according to scheme. Scheme allow to parse and 

aggregate various type of information provided. Table 

3 provides part of knowledge scheme used as an 

example [4],[5],[6]. 

Table 3: Example entries in knowledge scheme file 

1 Number of players > 3; Numeric; 

numberOfPlayers; Greater than; 3 

2 Player position BB; Numeric; playerPosition; 

Equal; 6 

3 First raise position SB; Numeric; 

firstRaisePosition; Equal; 5 

4 Pair; Text; higherCardFigure; Equal; 

lowerCardFigure 

5 Effective stack 5-6BB; Numeric; 

effectiveStackInBb; Between; 4; 7 

 

Developed backward chaining algorithm works as 

follows: 

1. Check if hypothesis is in database. 

2. If yes then return true - current hypothesis is 

proven. 

3. For each rule check if hypothesis is in rules 

consequent. 

4. If Consequent from current rule matches 

hypothesis then iterate over antecedent list. 

5. Take current element as sub-hypothesis and try to 

prove it - go back to point 1 and use it as hypothesis. 

6. If any list element cannot be proven it means whole 

antecedent cannot be proven so 

7. Move to next rule if possible - go back to point 4. 

8. If you are out of rules then return false. 

As it can be seen this is recursive algorithm. If at any 

moment during its execution every element of 

antecedent of rule that will prove main hypothesis 

is proven right algorithm finishes and returns true 

which means that hypothesis was proven. If algorithm 

is out of rules on highest step - while looking for rules 

that could prove main hypothesis, then it returns false 

which means that hypothesis cannot be proven with 

obtained facts. 
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2.5. Expert knowledge 

In order to use expert knowledge in expert system it 

have to be expressed in form of rules. To do that 

many sessions with poker expert were performed. 

Long process ended up with statement of 135 points 

describing expert’s strategy. Each of those points was 

brief of description of conditions for some specific 

situation that have to be met in order for making a 

raise decision. After that set of rules had to be prepared 

in order to feed expert engine. For testing purposes 

314 poker table images were prepared. Each of them 

was labelled with proper decision thanks to expert’s 

help so it could be used as reference point during 

measurements. Strategy points created along with 

expert were grouped and sorted from most common 

situations to most specific ones. Thanks to that it was 

possible to measure how each part will influence 

recognition rate and time. As mentioned earlier each 

point consists of conditions for raise decision for 

some specific in-game situation. Despite those points 

describes fully functional strategy and that they could 

be used in this exact form by someone to play they 

are still not useful for expert system. Those points 

could be easily translated to valid expert system rules 

by simply dividing each of them to groups of 

conditions which all have to be proven in order to prove 

raise decision. However that wouldn’t be a proper 

solution. Whole next part of rule development was 

focused of finding groups and repetitions within 

points. Let’s say there is 99+ in range description in 

some point. Even considering all other conditions have 

to be simply proven true, this means duplication of 

them in many rules for each of pairs: 99, TT, JJ, QQ, 

KK and AA and this is only considering 99+ in 

range section. Those rules would have to be 

multiplied each time new hand appears in range 

section. We can see that there would be minimum of 

6 rules for 99+. When adding for example AJ+ we get 

6x3 combinations. This pattern would follow for 

each additional hand with + suffix and 23+ would 

get us 156 combinations alone. Because of that first 

big set of rules described chain proving each 

possible hand, so for example mentioned 99+ could be 

used in rule and be understood by expert system. To 

accomplish that 680 rules have to be made. That may 

seem much in fact it greatly reduces future number 

of rules. Let’s say expert system is processing a table 

where player have Ace and Jack suited and should 

raise according to strategy. Engine is trying to prove 

that and now is processing hand ranges in rule that will 

eventually prove raise decision. Rule says that player 

hand have to meet condition T9s+ [4],[5]. 

 

3. Results 

3.1. Image recognition analysis 

Image recognition module was developed in such 

manner that it is possible to tweak both MLP specific 

parameters which are maximum number of iterations, 

learning rate, error rate and momentum and also image 

preprocessing parameters: conversion to black and 

white, conversion to grayscale and image scaling. 

Firstly commonly used MLP parameters were 

selected in order to check how far using such presets 

could go. For image preprocessing firstly scaling 

image was set to 0,7 of its size and it was converted to 

black and white, because in case of images used colour 

was not giving any important information. Rest of 

values used were mentioned common settings for 

MLP and fortunately it was possible to get 100% 

correct recognition rate. First tests were made with 

reducing scale. Graphs below show how reducing 

image scale influenced success rate and average time 

per table recognition. First tests were made with 

reducing scale. Figure 4 shows how reducing image 

scale influenced success rate. 

 

 

Figure 4. Success rate to scale ratio 

 

As described earlier number of neurons in input and 

hidden layers are directly dependent on number of 

elements in flattened image table. Because of that this 

is not a surprise that table recognition time decreases 

as scale gets smaller because neural network gets 

simpler. As it goes for success rate it can be seen that 

it is stable till scale is 0.5. After that point some 

fluctuations can be seen and correct recognition rate 

starts to drop significantly after scale reaches 0.3 point. 

When image is scaled down its resolution decreases, 

so each pixel in scaled image is calculated as weight 

average of group of pixels from original image. After 

reaching 0.55 fluctuations are caused by this 

averaging. For some scales averages can make pictures 

more or less distinguishable. As an example we can see 

a drop at 0.5 scale but it gets better again at 0.45. 

Significant drop after 0.3 happens simply because 

images get scaled down so much that each scale 

reduction cause them to be more and more 

undistinguishable. Because 0.55 seems to be last stable 

point it was used for updating base values. 
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After dealing with scale learning rate was next. This 

value have to be carefully selected so weights 

converge to a response fast enough. Tests started with 

value lower than base one and then were gradually 

increased (Figure 5). It seems correct success rate 

drops when learning rate goes below 0.3 

 

 
Figure 5. Success rate to learning rate 

Next measured value was momentum. It determines 

how much each individual weight change depending 

to its previous change. In this case base value was 

used as starting point which was 0.9 and after that it 

was gradually decreased (Figure 6). Changes that 

appear looks more like caused by random error rather 

than parameter value change. 

 
Figure 6. Success rate to momentum 

Because base value for max iterations was fairly big 

measurements were started with 5000, then moved 

to 2000 and 1000. Later on success rate started to 

change so measurement was made every 100 

iterations. After going below 100 success rate changed 

more rapidly so additional measurements were made 

for 50, 25 10 and 5 iterations (Figure 7). 

 

 
Figure 7. Success rate to max number of iterations 

It can be seen that success rate is stable at 100% till 

passing 1000 iterations border. After that it fluctuates 

within 10% range and starts drastically dropping when 

number of iterations is less than 100. Those results 

seems to be reasonable and therefore 1000 max 

iterations were chosen for redoing learning rate and 

momentum measurements. 

3.2. Expert system analysis 

Strategy developed in form of rules along with expert 

system itself turned to be a great success. Finally it 

was possible to correctly recognize decision from all 

but one test table images in average time ~0.6 

seconds per table. Including all utility rules it took 

exactly 1960 rules to accomplish that. As mentioned 

earlier rules were developed in iterative process 

following strategy points delivered by the expert. 

Thanks to that it was possible to perform 

measurements and evaluations all along the way.  

In its current state engine is set so it tries to prove raise 

decision and assumes fold if is unable to. Because of 

that first test was performed with no rules at all. This 

can be considered also as “always fold strategy”. Results 

weren’t surprising. 221 out of 314 tables were 

recognized correctly which is about 70%. Average 

recognition time was 265ms per table. 70% may sound 

like a lot but in fact it is not reliable measurement in 

this situation. That was the reason two additional 

measurements were made: raises recognized 

correctly, and of course none of them was 

recognized correctly and folds recognized correctly 

with correct recognition rate of 100%. We can observe 

that basing on available sample player should raise in 

only 30% of situations and fold in other 70%. 

Summing all that up 70% correct recognition rate isn’t 

telling anything about usefulness of application by 

itself. One cannot win if he/she won’t play so with 0% 

correct raise recognition rate “always fold strategy” is 

useless. However this measurement will serve as 

reference point for following ones. 

Next measurement was performed for basic strategy 

used previously for engine testing purposes. This is 

very simple strategy, but still a valid one. Point of 

this measurement is to get another reference point and 

be able to compare correct recognition rate, correct 

raise recognition rate and correct fold recognition rate 

of it to target strategy during further iterative 

development. Results were not as bad as predicted, 

258 out of 314 tables were recognized correctly 

(82%), with 60/93 (64%) raises and 198/221 (89%) 

folds recognized correctly. This strategy consists of 

only 88 rules and average time of recognition 

increased only slightly by 24ms to 289ms total per 

table. Tab 4. presents results for two reference and 

target strategies after two iterations. 
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Table 4: Results - two reference strategies 

 Correct ms/ 

table 

No. 

rules 

Raises Folds 

Always fold 221/314 265 0 0/93 221/221 

strategy (70%)   (0%) (100%) 

Basic 258 /314 289 88 60/93 198/221 

strategy (82%)   (64%) (89%) 

Target 240/314 481 724 20/93 220/221 

strategy #1 (76%)   (21%) (99%) 

Target 250/314 981 835 33/94 217/220 

strategy #2 (79%)   (35%) (98%) 

 

At that point average recognition time per table 

seemed to be considerably big. If number of rules 

from #1 iteration were subtracted from #2 we see that 

it increased by 111. Assuming that “always fold 

strategy” average time is used for all other processing 

but rules, it can be calculated that 724 rules from 

#1 iteration take 216ms (481ms–265ms) to process 

while #2 iteration 835 rules take 716ms (918ms–

265ms) on average to process. With those numbers it 

is easy to calculate that time increased by 332% while 

number of rules increased by 111 (15%). Those are 

highly alarming values considering that #2 iteration 

of target strategy consists of about 9% of whole expert 

knowledge. 

4. Conclusions 

It was possible to develop a system in form of desktop 

application which is capable of providing valid poker 

decision basing on poker table image and expert 

knowledge provided as an input. The average time 

which takes to perform whole process from the start 

to output decision and reasoning information is less 

than a second which makes whole system much more 

useful for end user who doesn’t have to wait while 

performing his/her analysis. It was possible to 

minimize internal image recognition errors to the 

point that every of 314 table images used during 

testing was recognized correctly. What is more work 

done with expert was very fruitful. It took 1960 rules 

to express expert knowledge in form understood by 

expert system and fortunately system was able to 

achieve 99% accurate (according to the expert) correct 

decision making rate. Only one decision (rounded up 

to 1%) made was incorrect. As mentioned in previous 

sections it was caused by very rare and unexpected 

situation in game which conflicted with the way 

number of opponents were recognized. Summing up 

it was possible to solve main problems which were: 

image recognition and performing automatic 

reasoning according to knowledge provided along 

with minor ones which appeared along the way. 

System is very useful to end user which is 

intermediate poker player as he is able to get deep 

feedback to real situations he encountered as long as 

we assume expert knowledge provided as correct, but 

it was one of the main assumptions of this work. 

System created can be considered a complete working 

product but it is not closed for extensions. In the future 

first think might be to deal with one situation which 

was recognized incorrectly. To do so way of opponent 

recognition have to be analysed and implemented 

again. Other than that future work might focus on 

dealing with system limitations. It was proven that it 

is possible for such system to work in limited 

environment, so next step could be to research 

whether it would be possible achieve similar results 

for other than first phases of poker hand were we have 

to deal not only with additional cards dealt on the table 

(which greatly increases complexity of the situation) 

but we also have to take into account previous 

decisions made. Because system was made in modular 

way it would be also possible to extend image 

recognition module to work with various online poker 

clients and their table layouts so it could also be used 

for players playing on other platforms. Finally if 

restricting to only first decision of each hand 

limitation was removed system could be extended to 

work with other Texas Hold’em (and probably other 

poker variations) game formats. This limitation was 

only one which was refraining from doing so as 

system was developed in the way that expert 

knowledge is delivered as separate file, so there is 

nothing else preventing from developing rules for 

different strategies and for different formats. All the 

time system could be kept in its modular form as it 

greatly improves both possibilities for future 

improvements and extensions. 
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