
Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 47

Mazurkiewicz Jacek
Wroclaw University of Science and Technology, Faculty of Electronics, Poland

Intelligent system for card game analysis and prediction

Keywords

poker game, expert system, softcomputing, picture analysis, card game rules verification

Abstract

The paper presents a system which to make proper poker decision in situations provided by end user via image

of the online poker table. The system provides feedback and reasoning behind decision made. The main goal is

to minimize influences of errors and unwanted factors on each step so final decision could be accurate and useful

in as many cases as possible. The idea is to use softcomputing technologies as neural networks for image recognition

and expert system for decision making process. The system - able to parse poker table image - could be used

by poker player for self-study on example on his/her own past in-game situations. Image is screenshot of the

interface that is provided by online poker room to a player, so all information available to a player will also be

available for further processing. The proposed solution can be an essential tool for the monitoring and verification

of card game rules systems and to point the incorrect or illegal situations based on video data.

1. Introduction

The aim of this work is to check if it is possible to

utilize professional poker player knowledge to

provide automatic feedback about Texas Hold’em

game situation. Seems it is possible to develop a

system which makes proper poker decision in

situations provided by end user via image of the

online poker table. What is more such system would

have to provide feedback and reasoning behind

decision made. The main goal is to minimize

influences of errors and unwanted factors on each

step so final decision could be accurate and useful in

as many cases as possible. The idea is to use

softcomputing technologies as neural networks for

image recognition and expert system for decision

making process [5],[1].

Mentioned system could be used by poker player for

self-study on example on his/her own past in-game

situations. Such application should to be able to parse

poker table image. Image is screenshot of the interface

that is provided by online poker room to a player, so

all information available to a player will also be

available for further processing. These information

have to be gathered from image. This is where first

problem appears – image recognition. Unnecessary

data should be removed so only important

information will be left. The idea is to use neural

networks and check whether one can be trained to

recognize important elements properly. Because of

expert knowledge utilization there have to be a way for

introducing it to the system. This is where second

problem appears – performing automatic reasoning

according to knowledge provided. Expert systems

were already successfully used in medicine and other

areas where expert knowledge could be gathered for

performing decision in automatic way at some level.

This is why the solution will be to develop the

expert system for solving mentioned problem. It will

be used for coming up with a proper decision

according to rules provided. As mentioned before in

most cases decision in poker game cannot be

ultimately wrong or right. Because of that expert

knowledge will be treated as reference to output

provided. The measurements will be provided to help

to answer important questions: How well developed

rules could reflect expert knowledge? How credible

such system could become for other poker players?

Finally system will have to provide end user

interface where poker table images and strategy can

be provided and after processing output is presented

to user. Such output will have to include decision

and justification behind it, so user could understand

experts reasoning [6].

2. System modules

The application will be split into modules in a way that

each module will have one responsibility. Figure 1

Mazurkiewicz Jacek

Intelligent system for card game analysis and prediction

 48

presents overall look on how those modules will

interfere with each other.

Figure 1. Application data flow diagram

In the first step poker table image will be provided as

the application input. First module to process it will

be image parser. At that point image will be split into

pieces, so only important parts that will be used in

further recognition are left. Next, those small images

will be processed by image recognition module. At

that step all information held by images provided

will be extracted to data form. This will be done

via multilayer perceptron when necessary and some

lighter custom solutions when possible. After that

extracted data will be delivered to information

processing module where it will be converted to a

form where all unnecessary information is dropped and

only data essential for decision making process is left.

These information will be directly inserted to expert

system module where decision process will take

place. However in order to perform a decision

process firstly a strategy in form of rules have to

be provided. To acquire a strategy in required form

another process have to take place. Poker expert will

be questioned about his strategy. At that point set of

points describing how the game should be played

according to expert will be created. Further those

points will have to be translated to rule form

understood by expert system. With rules provided

expert system will be performing backward chaining

trying to prove raise decision for every poker table

image provided. If system succeeds to prove raise,

then set of rules proven during backward chaining

will be displayed to end user along with final raise

decision. In other case, when system won’t be able

to prove raise by using rules provided it will

automatically assume that player should fold and

display according information to end user [2].

2.1. Image parser

After providing poker image to the system the first step

is to cut out only important parts of it. This is done in

image parser module. Information about what

information is important was acquired via interview

with poker expert. During it he was questioned about

what he looks at the table while making a decision.

Conclusion was which elements have to be extracted

to be able to get full necessary knowledge from them.

Figure 2 presents an example poker table with marked

essential parts.

Figure 2. Poker table image - essential parts marked

First important part is the fold button (marked by

white box). It indicates possibility to fold which is

always available where person playing is to make a

decision. What is more it is available only then, so it’s

appearance could be used as a validation that a proper

image with decision pending have been provided to the

system. Second thing are player cards (marked by red

box). This is without a doubt part providing essential

information for further decision making process.

Because whole card images are not needed only a

small square containing both cards figures and suits is

cut out. Next important thing to track on poker table

is dealer button. Its positions says who is the dealer

in current hand, but also much more information is

acquired basing on it. On the image above green boxes

marks spots where button will appear if corresponding

player is a dealer. To avoid unnecessary increasing of

images those six spots are cut out and merged to a

single image before further processing. Undoubtedly

one of more important thing is to know amount of each

player’s chips. However there are two spots for each

player that needs to be combined in order to acquire

that information. First is under each player’s name and

second near his/her avatar on the table (both spots

marked with grey box for each player). That is because

when someone makes a bet its amount is instantly

subtracted from value displaying under his/her name

while not being in pot yet. This value is visualized

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 49

by chips stack and corresponding number near the

player. Information about chips we have can be read

from spot marked with blue boxes. In that case there

is also need for reading spot on the table even we are

always before making any decision. That is because

there is a possibility of us being at blind position.

When that’s the case the blind value is displayed in

same manner as a bet. Next we need to check position

of cards near each of our opponents. If they are near

one it means he/she is still playing current hand,

otherwise not. For that a spot marked with yellow

box is cut out for each opponent. Another interesting

spot is each opponent border colour (marked with

brown boxes). That is to be used for further

application tuning. Poker software allows for

marking opponents with colours and notes so colours

can correspond to player evaluation poker expert

made. Such information could surely affect final

decision. Last important information is to know how

many players are left at the table. This one can be

simply acquired by checking for each opponent if

his/her avatar is displaying in specific spot at the

table. For that spot where player avatar appears is cut

out for each opponent [5].

2.2. Image recognition

It was decided to recognize this information using

neural networks because images contain different

colours (unlike number of chips for example) and

they have limited domain, so it will be easier to teach

the network. Recognizing an image using artificial

neural networks forced preprocessing to be

considered as the process of learning is quite long. In

order to make it shorter, but still reliable, neural

network teaching user interface was created. It

allowed not only setting network parameters but also

specify image scaling and to convert image to pure

black and white or grayscale. Thanks to created UI

decision what to do with the particular type of the

image (card figures, colours or dealer position) can be

put on hold till network teaching phase because

everything can be changed on the fly. Under the hood

there is a teaching module that handles this process.

It makes necessary image conversions allowed by the

UI, then converts such data to flattened array of

doubles (numbers from range [0.0, 1.0]). The array

consists of normalized, serialized RGB values. Figure

3. describes process of acquiring such data structure.

The flattened array of the image is used as input to the

neural network. The chosen neural network is

multilayer perceptron (MLP) with back propagation

learning method, as the outcome of the images was

known and it was possible to specify the output of

corresponded input. Back propagation with momentum

was used in order to enhance the neural network by

avoiding oscillation problem (when the error

surface has a very narrow minimum area).

Figure 3. Image to flattened array conversion

Neural networks used consist of three layers: input

layer, hidden layer and output layer. In the input layer

number of neurons is equal to number of elements in

flattened array, so it is dependent on provided image

size. Because image size vary on scaling parameter

number of input layer neurons will change during

testing. Output layer has different values depends on

type of the image - if this is image that contains card

figure, it has 4 neurons, as the figure you can describe

binary in 4 bits (there are 13 values from 2 to Ace.

Analogically card suits and dealer button position have

respectively 2 and 3 output neurons. Finally three

MLP were used: one for card figure recognition,

one for card suit recognition and one for dealer

position recognition. All network configuration was

same – with sigmoid activation function - in each case

with exception of number of neurons. For network

teaching process group of tables selected in a way

that every card figure from 2 to Ace, every card suit

within spades, clubs, diamonds and hearts and every

dealer position appear at least once within them . That

means as for the cards there was no requirement that

every of 52 different cards must appear. It is because

card is not considered as a whole but as the set of two

independent information: suit and figure. Also

because card figures were decided to be converted

to black and white during preprocessing there is no

reason of having each figure image in each possible

colour. To be sure enough within samples that are

provided in final set each card figure appears at least

twice in at least two different suits – conversion to

black and white may not produce exactly same

image for different colours on pixel level. Final

teaching set consisted of 44 poker table images, with

two cards on each one giving a total of 88 card figure,

88 card suit and 44 dealer position samples. For each

of recognized types data set is created. Such data set

Mazurkiewicz Jacek

Intelligent system for card game analysis and prediction

 50

consist of number of rows equal to number of samples

provided. Each row consist of flattened image array

and output is should provide. It is fed along with

teaching parameters to MLP and train function is

invoked. During its execution MLP iterates over data

set and updates weights between each neuron layer

accordingly to anticipated results provided in each

data set row. Exact teaching parameters used were

determined by research [3].

Table 1: Output of recognition

Recognized

information

Value

Figure of first

and second card

2, 3, 4, 5, 6, 7, 8, 9, T, J, Q, K, A,

where T=10, J=Jack, K=King, A=Ace

Suit of first

and second card

h, d, s, c, where h=Hearts, d=Diamonds,

s=Spades, c=Clubs

Dealer button

position

integer within range [1,6]

2.3. Information processing

After all operations of image recognition module are

done we are left with simple objects containing all

gathered data in variables, so there is no need for

further usage of images. This is the point where these

information needs to be processed within

information processing module. The reason for this is

that raw data in most cases can be compressed, for

example information about suits of first and second

card are useless by themselves. The only thing that is

important while making a decision is whether those

suits are the same or not (if our cards are suited or not).

After consultation with expert in this area list of

information that has to be extracted from gathered data

was created.

Data delivered to module: is fold button available

(Boolean value), dealer position (1 to 6 numeric

value), number of players (3 to 6 numeric value), first

card figure (text value), first card suit (text value),

second card figure (text value), second card suit (text

value), total chips for each player (6 element list of

numeric values), chips on table for each player (6

element list of numeric values), opponent border

colour (6 element list of textual values).

By using information provided various important

measures are calculated. Final output information is:

player position, first raise position, player stack in big

blinds, effective stack in big blinds, higher card figure,

lower card figure, are cards suited, border rating,

number of players, number of raisers, number of

limpers [4].

Player position is represented by number from 1 to 6. It

is assumed that person on Big Blind (2 places

clockwise from dealer position) is on position 6 and

number decreases while moving counter clockwise.

When number of players decreases positions start to

disappear from lowest ones so for example when there

are only 3 players left the positions are 4, 5 and 6.

To calculate player stack in big blinds player stack

have to be divided by value of Big Blind with standard

rounding (example: stack = 850, big blind = 200, stack

in bb = 4). Result value is player stack in big blinds.

To calculate effective stack at first each stack have

to be calculated (player and opponents) in big blinds.

This is done same way as calculation of player stack in

big blinds but this time for each opponent. When each

stack is expressed in big blinds formula have to be

calculated: Min(player stack, Max(opponents left in

play stacks)). So at first only opponents that are still

in play (are still to move or already lipped or raised)

have to be checked and highest stack value in big

blinds have to be taken. Then it have to be

compared to player stack in big blinds. Smaller of

those two values is effective stack, it represent how

much player can lose if he/she will play this hand.

To calculate those two both figures that were read from

table have to be compared to each other. The higher

one is returned as higher card figure and lower one as

Lower card figure. Possible figures from lowest to

highest are: 2, 3, 4, 5, 6, 7, 8, 9, T, J, Q, K and A, where

T is ten, J is Jack, Q is Queen, K is King and A is Ace.

In case when both card figures are same for example

7 and 7 there is no difference which card will be

returned as higher and lower.

To tell if cards are suited suits of two cards that player

got have to be compared. If they are the same true is

returned, otherwise false [4].

To calculate border rating border colours that were

read are mapped to player rating. Currently

following ratings are used: Random player, Regular

player, Weak limper and Good limper. Borders are

mapped in following manner: no label, yellow, black,

blue, red, pink, light orange – Random, orange, lime,

green, cyan, dark blue, white, – Regular, purple – Good

limper, grey – Weak limper.

To calculate number of limpers/raisers firstly chips

lying on table next to each opponent that already

made action and haven’t folded have to be looked up. If

that amount is same as value of big blind it means

that such person is a limper and if this amount is

greater than value of big blind then this player is

considered to be a raiser. After it both number of

raisers and number of limpers are counted.

If some opponent raised before we were to make a

decision, only information needed is first raise

position, even if there is more than one raiser. For

each player that moves before us the amount of chips

on table is checked. This is done from earliest to

latest position, if someone is detected to be a raiser –

his/her amount of chips on table is greater than BB

current opponent position is returned. In case of

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 51

number of players there is no need for any conversion,

value is forwarded further as it came [5].

2.4. Expert system

Expert system was used as a solution for making a

decision at poker table. Because no solutions that

suited application specific needs in 100% decision was

made to develop custom expert system engine. This

engine is slightly simplified but not closed for

extending. In poker games that are considered within

this work players will fold much more often than

raise. Because of that the easiest way to develop

strategy is to specify when player should raise and

assuming than he/she should fold in every other

situation. By doing that knowledge base can be

greatly optimized. It can consist of only rules that

either have raise decision as their consequent or that

can be used as a part of a chain for proving it.

Regarding to thesis limitations decision is binary –

player either has to fold or go all in. According to that

hypothesis was made that player should go all in and

engines will try to prove it. In other words engine

have a goal and it will try to achieve. That analysis

resulted in choosing backward chaining as it is goal-

driven reasoning [5] as mechanism which will be

used within engine. After engine finishes its work

it gives information if it was able to prove

hypothesis with rules provided along with textual

information on rules used in case of success.

Whole knowledge base is represented by list of rules.

Each rule can be logically divided into IF and THEN

parts. On implementation level THEN is represented

as single fact object and IF part is list of such facts.

THEN - the consequent is an action which is

executed when it’s IF part – the antecedents list is

proven. As was mentioned before my expert system

is slightly simplified and because of that there is

currently no support for OR statement and negations

in Antecedent - only AND statement is supported. In

other words all facts that are on Antecedents list have

to be proven true in order to action to be fired.

Knowledge base are stored in *.rgp files in textual

form. Table 2 below presents part of example rgp file.

Table 2: Example rules within rgp file

1 Fact: Bubble R1; Number of players=3,

Number of raisers 1, Number of limpers 0

2 Raise; Pb FTA Ps9+BB, Player position UTG,A7s+

3 Raise; Pb FTA Ps9+BB, Player position UTG,ATo+

Database is a simple list of facts that are true. In this

system case this list is only filled once before trying

to prove hypothesis and not modified afterwards. This

is because of using backward chaining method which

is not modifying database during execution. This is

also where a concept of mine called Knowledge

scheme was introduced. After questioning expert it

came out that simply inserting processed information

to database might not be a good idea. It is because

exact information is not always useful for the expert.

For example there is no difference whether player

have 9, 10, 11 or more big blinds, the only thing

that matters is that he/she have 9 or more. More

specific information will not have impact on final

decision. That is the reason why small sub-module

was introduced in process of insertion of knowledge to

database. It allows user to provide filter – knowledge

scheme. This module will not insert information

provided directly to database but process it

according to scheme. Scheme allow to parse and

aggregate various type of information provided. Table

3 provides part of knowledge scheme used as an

example [4],[5],[6].

Table 3: Example entries in knowledge scheme file

1 Number of players > 3; Numeric;

numberOfPlayers; Greater than; 3

2 Player position BB; Numeric; playerPosition;

Equal; 6

3 First raise position SB; Numeric;

firstRaisePosition; Equal; 5

4 Pair; Text; higherCardFigure; Equal;

lowerCardFigure

5 Effective stack 5-6BB; Numeric;

effectiveStackInBb; Between; 4; 7

Developed backward chaining algorithm works as

follows:

1. Check if hypothesis is in database.

2. If yes then return true - current hypothesis is

proven.

3. For each rule check if hypothesis is in rules

consequent.

4. If Consequent from current rule matches

hypothesis then iterate over antecedent list.

5. Take current element as sub-hypothesis and try to

prove it - go back to point 1 and use it as hypothesis.

6. If any list element cannot be proven it means whole

antecedent cannot be proven so

7. Move to next rule if possible - go back to point 4.

8. If you are out of rules then return false.

As it can be seen this is recursive algorithm. If at any

moment during its execution every element of

antecedent of rule that will prove main hypothesis

is proven right algorithm finishes and returns true

which means that hypothesis was proven. If algorithm

is out of rules on highest step - while looking for rules

that could prove main hypothesis, then it returns false

which means that hypothesis cannot be proven with

obtained facts.

Mazurkiewicz Jacek

Intelligent system for card game analysis and prediction

 52

2.5. Expert knowledge

In order to use expert knowledge in expert system it

have to be expressed in form of rules. To do that

many sessions with poker expert were performed.

Long process ended up with statement of 135 points

describing expert’s strategy. Each of those points was

brief of description of conditions for some specific

situation that have to be met in order for making a

raise decision. After that set of rules had to be prepared

in order to feed expert engine. For testing purposes

314 poker table images were prepared. Each of them

was labelled with proper decision thanks to expert’s

help so it could be used as reference point during

measurements. Strategy points created along with

expert were grouped and sorted from most common

situations to most specific ones. Thanks to that it was

possible to measure how each part will influence

recognition rate and time. As mentioned earlier each

point consists of conditions for raise decision for

some specific in-game situation. Despite those points

describes fully functional strategy and that they could

be used in this exact form by someone to play they

are still not useful for expert system. Those points

could be easily translated to valid expert system rules

by simply dividing each of them to groups of

conditions which all have to be proven in order to prove

raise decision. However that wouldn’t be a proper

solution. Whole next part of rule development was

focused of finding groups and repetitions within

points. Let’s say there is 99+ in range description in

some point. Even considering all other conditions have

to be simply proven true, this means duplication of

them in many rules for each of pairs: 99, TT, JJ, QQ,

KK and AA and this is only considering 99+ in

range section. Those rules would have to be

multiplied each time new hand appears in range

section. We can see that there would be minimum of

6 rules for 99+. When adding for example AJ+ we get

6x3 combinations. This pattern would follow for

each additional hand with + suffix and 23+ would

get us 156 combinations alone. Because of that first

big set of rules described chain proving each

possible hand, so for example mentioned 99+ could be

used in rule and be understood by expert system. To

accomplish that 680 rules have to be made. That may

seem much in fact it greatly reduces future number

of rules. Let’s say expert system is processing a table

where player have Ace and Jack suited and should

raise according to strategy. Engine is trying to prove

that and now is processing hand ranges in rule that will

eventually prove raise decision. Rule says that player

hand have to meet condition T9s+ [4],[5].

3. Results

3.1. Image recognition analysis

Image recognition module was developed in such

manner that it is possible to tweak both MLP specific

parameters which are maximum number of iterations,

learning rate, error rate and momentum and also image

preprocessing parameters: conversion to black and

white, conversion to grayscale and image scaling.

Firstly commonly used MLP parameters were

selected in order to check how far using such presets

could go. For image preprocessing firstly scaling

image was set to 0,7 of its size and it was converted to

black and white, because in case of images used colour

was not giving any important information. Rest of

values used were mentioned common settings for

MLP and fortunately it was possible to get 100%

correct recognition rate. First tests were made with

reducing scale. Graphs below show how reducing

image scale influenced success rate and average time

per table recognition. First tests were made with

reducing scale. Figure 4 shows how reducing image

scale influenced success rate.

Figure 4. Success rate to scale ratio

As described earlier number of neurons in input and

hidden layers are directly dependent on number of

elements in flattened image table. Because of that this

is not a surprise that table recognition time decreases

as scale gets smaller because neural network gets

simpler. As it goes for success rate it can be seen that

it is stable till scale is 0.5. After that point some

fluctuations can be seen and correct recognition rate

starts to drop significantly after scale reaches 0.3 point.

When image is scaled down its resolution decreases,

so each pixel in scaled image is calculated as weight

average of group of pixels from original image. After

reaching 0.55 fluctuations are caused by this

averaging. For some scales averages can make pictures

more or less distinguishable. As an example we can see

a drop at 0.5 scale but it gets better again at 0.45.

Significant drop after 0.3 happens simply because

images get scaled down so much that each scale

reduction cause them to be more and more

undistinguishable. Because 0.55 seems to be last stable

point it was used for updating base values.

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 53

After dealing with scale learning rate was next. This

value have to be carefully selected so weights

converge to a response fast enough. Tests started with

value lower than base one and then were gradually

increased (Figure 5). It seems correct success rate

drops when learning rate goes below 0.3

Figure 5. Success rate to learning rate

Next measured value was momentum. It determines

how much each individual weight change depending

to its previous change. In this case base value was

used as starting point which was 0.9 and after that it

was gradually decreased (Figure 6). Changes that

appear looks more like caused by random error rather

than parameter value change.

Figure 6. Success rate to momentum

Because base value for max iterations was fairly big

measurements were started with 5000, then moved

to 2000 and 1000. Later on success rate started to

change so measurement was made every 100

iterations. After going below 100 success rate changed

more rapidly so additional measurements were made

for 50, 25 10 and 5 iterations (Figure 7).

Figure 7. Success rate to max number of iterations

It can be seen that success rate is stable at 100% till

passing 1000 iterations border. After that it fluctuates

within 10% range and starts drastically dropping when

number of iterations is less than 100. Those results

seems to be reasonable and therefore 1000 max

iterations were chosen for redoing learning rate and

momentum measurements.

3.2. Expert system analysis

Strategy developed in form of rules along with expert

system itself turned to be a great success. Finally it

was possible to correctly recognize decision from all

but one test table images in average time ~0.6

seconds per table. Including all utility rules it took

exactly 1960 rules to accomplish that. As mentioned

earlier rules were developed in iterative process

following strategy points delivered by the expert.

Thanks to that it was possible to perform

measurements and evaluations all along the way.

In its current state engine is set so it tries to prove raise

decision and assumes fold if is unable to. Because of

that first test was performed with no rules at all. This

can be considered also as “always fold strategy”. Results

weren’t surprising. 221 out of 314 tables were

recognized correctly which is about 70%. Average

recognition time was 265ms per table. 70% may sound

like a lot but in fact it is not reliable measurement in

this situation. That was the reason two additional

measurements were made: raises recognized

correctly, and of course none of them was

recognized correctly and folds recognized correctly

with correct recognition rate of 100%. We can observe

that basing on available sample player should raise in

only 30% of situations and fold in other 70%.

Summing all that up 70% correct recognition rate isn’t

telling anything about usefulness of application by

itself. One cannot win if he/she won’t play so with 0%

correct raise recognition rate “always fold strategy” is

useless. However this measurement will serve as

reference point for following ones.

Next measurement was performed for basic strategy

used previously for engine testing purposes. This is

very simple strategy, but still a valid one. Point of

this measurement is to get another reference point and

be able to compare correct recognition rate, correct

raise recognition rate and correct fold recognition rate

of it to target strategy during further iterative

development. Results were not as bad as predicted,

258 out of 314 tables were recognized correctly

(82%), with 60/93 (64%) raises and 198/221 (89%)

folds recognized correctly. This strategy consists of

only 88 rules and average time of recognition

increased only slightly by 24ms to 289ms total per

table. Tab 4. presents results for two reference and

target strategies after two iterations.

Mazurkiewicz Jacek

Intelligent system for card game analysis and prediction

 54

Table 4: Results - two reference strategies

 Correct ms/

table

No.

rules

Raises Folds

Always fold 221/314 265 0 0/93 221/221

strategy (70%) (0%) (100%)

Basic 258 /314 289 88 60/93 198/221

strategy (82%) (64%) (89%)

Target 240/314 481 724 20/93 220/221

strategy #1 (76%) (21%) (99%)

Target 250/314 981 835 33/94 217/220

strategy #2 (79%) (35%) (98%)

At that point average recognition time per table

seemed to be considerably big. If number of rules

from #1 iteration were subtracted from #2 we see that

it increased by 111. Assuming that “always fold

strategy” average time is used for all other processing

but rules, it can be calculated that 724 rules from

#1 iteration take 216ms (481ms–265ms) to process

while #2 iteration 835 rules take 716ms (918ms–

265ms) on average to process. With those numbers it

is easy to calculate that time increased by 332% while

number of rules increased by 111 (15%). Those are

highly alarming values considering that #2 iteration

of target strategy consists of about 9% of whole expert

knowledge.

4. Conclusions

It was possible to develop a system in form of desktop

application which is capable of providing valid poker

decision basing on poker table image and expert

knowledge provided as an input. The average time

which takes to perform whole process from the start

to output decision and reasoning information is less

than a second which makes whole system much more

useful for end user who doesn’t have to wait while

performing his/her analysis. It was possible to

minimize internal image recognition errors to the

point that every of 314 table images used during

testing was recognized correctly. What is more work

done with expert was very fruitful. It took 1960 rules

to express expert knowledge in form understood by

expert system and fortunately system was able to

achieve 99% accurate (according to the expert) correct

decision making rate. Only one decision (rounded up

to 1%) made was incorrect. As mentioned in previous

sections it was caused by very rare and unexpected

situation in game which conflicted with the way

number of opponents were recognized. Summing up

it was possible to solve main problems which were:

image recognition and performing automatic

reasoning according to knowledge provided along

with minor ones which appeared along the way.

System is very useful to end user which is

intermediate poker player as he is able to get deep

feedback to real situations he encountered as long as

we assume expert knowledge provided as correct, but

it was one of the main assumptions of this work.

System created can be considered a complete working

product but it is not closed for extensions. In the future

first think might be to deal with one situation which

was recognized incorrectly. To do so way of opponent

recognition have to be analysed and implemented

again. Other than that future work might focus on

dealing with system limitations. It was proven that it

is possible for such system to work in limited

environment, so next step could be to research

whether it would be possible achieve similar results

for other than first phases of poker hand were we have

to deal not only with additional cards dealt on the table

(which greatly increases complexity of the situation)

but we also have to take into account previous

decisions made. Because system was made in modular

way it would be also possible to extend image

recognition module to work with various online poker

clients and their table layouts so it could also be used

for players playing on other platforms. Finally if

restricting to only first decision of each hand

limitation was removed system could be extended to

work with other Texas Hold’em (and probably other

poker variations) game formats. This limitation was

only one which was refraining from doing so as

system was developed in the way that expert

knowledge is delivered as separate file, so there is

nothing else preventing from developing rules for

different strategies and for different formats. All the

time system could be kept in its modular form as it

greatly improves both possibilities for future

improvements and extensions.

References

[1] Bishop, Ch. M. (1995). Neural Networks for

Pattern Recognition. Birmingham, UK: Clarendon

Press Oxford.

[2] Butler, Ch. & Caudill, M. (1994). Understanding

Neural Networks. MA, USA: MIT Press

Cambridge.

[3] Damiani, E. (2004). Soft Computing in Software

Engineering. Berlin, Germany: Springer.

[4] Joey P., Skill or Luck.

http://realmoney.durrrrchallenge.com/skill-luck-

paradox/.

[5] O’Meara, A. F., Online No-Limit Texas Hold’em

For Beginners.

http://www.gamblingsystem.biz/books/Online%20

No-Limit%20Texas%20Hold'em%20Poker%20

For%20Beginners%20(August%20O'%20Meara).

pdf.

[6] Waterman, D.A. (1985). A Guide to Expert

Systems. Boston, USA: Addison Wesley Publishing

Company.

http://realmoney.durrrrchallenge.com/skill-luck-paradox/
http://www.gamblingsystem.biz/books/Online%20No-Limit%20Texas%20Hold%27em%20Poker%20For%20Beginners%20(August%20O%27%20Meara).pdf
http://www.gamblingsystem.biz/books/Online%20No-Limit%20Texas%20Hold%27em%20Poker%20For%20Beginners%20(August%20O%27%20Meara).pdf
http://www.gamblingsystem.biz/books/Online%20No-Limit%20Texas%20Hold%27em%20Poker%20For%20Beginners%20(August%20O%27%20Meara).pdf
http://www.gamblingsystem.biz/books/Online%20No-Limit%20Texas%20Hold%27em%20Poker%20For%20Beginners%20(August%20O%27%20Meara).pdf
http://www.gamblingsystem.biz/books/Online%20No-Limit%20Texas%20Hold%27em%20Poker%20For%20Beginners%20(August%20O%27%20Meara).pdf
http://www.gamblingsystem.biz/books/Online%20No-Limit%20Texas%20Hold%27em%20Poker%20For%20Beginners%20(August%20O%27%20Meara).pdf

