PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The binary algorithm of cascade connection of nonlinear digital filters described in functional series

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an example of the use of functional series for the analysis of nonlinear systems for discrete time signals. The homogeneous operator is defined and it is decomposed into three component operators: the multiplying operator, the convolution operator and the alignment operator. An important case from a practical point of view is considered – a cascade connection of two polynomial systems. A new, binary algorithm for determining the sequence of complex kernels of cascade from two sequences of kernels of component systems is presented. Due to its simplicity, it can be used during iterative processes in the analysis of nonlinear systems (e.g. feedback systems).
Rocznik
Strony
963--968
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Faculty of Electrical and Computer Engineering, 24 Warszawska St., 31-155 Cracow, Poland
autor
  • Cracow University of Technology, Faculty of Electrical and Computer Engineering, 24 Warszawska St., 31-155 Cracow, Poland
Bibliografia
  • [1] I. W. Sandberg, “On Volterra expansions for time-varying nonlinear systems”, IEEE Transactions on Circuits and Systems 30(2), 61‒67, (1983).
  • [2] A. Czarniak and J. Kudrewicz, “The convergence of Volterra series for nonlinear networks”, IEEE Trans. on Circuits and Sys-tems 31(8), 751‒752, (1984).
  • [3] L.O. Chua and Y. Liao, “Measuring Volterra kernels (II)” Int. J. Cir. Theor. Appl. 17, 151‒190, (1989).
  • [4] Y.S. Cho and E. J. Powers, “Estimation of nonlinear distortion using digital higher-order spectra and Volterra series”, Proc. of the IEEE Int. Symp. on Circuits and Systems, San Diego, USA, 2781‒2784, (1992).
  • [5] B. Mertzios, “Paralel modeling and structure of nonlinear Volterra discrete systems”, IEEE Trans. on Circuits and Systems, 41(5), 359‒371, (1994).
  • [6] A. Borys, “Nonlinear Aspects of Telecommunications: Discrete Volterra Series and Nonlinear Echo Cancellation”CRC Press, Floryda, USA, 2000
  • [7] A. Zhu and T.J. Brazil, “An adaptive Volterra predistorter for the linearization of RF high power amplifiers”, IEEE MTT-S Int. Microw. Symp. Dig., 461‒464, (2002).
  • [8] P.W. Eloe, M.N. Islam, and Y.N. Raffoul, “Uniform Asymptotic Stability in Nonlinear Volterra Discrete Systems”, International Journal of Computers and Mathematics with Applications 45, 1033‒1039, (2003).
  • [9] R.D. Fard, M. Karrari, and O.P. Malik, “Synchronous generator model identification for control application using Volterra series”, IEEE Transactions on Energy Conversion 20(4), 852‒858, (2005).
  • [10] M. Schetzen, “The Volterra and Wiener Theories of Nonlinear Systems”, FL, Malabar: Krieger, 2006.
  • [11] M.B. Meenavathi and K. Rajesh, ”Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Nosie”, International Journal of Electrical and Computer Engineering1(2), 184‒190, (2007).
  • [12] A. Borys, “Basic analog and digital electronic circuits with weak nonlinearities used in telecommunications”, University of Sci-ence and Technology, 2007 (in Polish).
  • [13] A. Zhu, P.J. Draxler, J.J. Yan, T.J. Brazil, D.F. Kimball, and P.M. Asbeck, ”Open-Loop Digital Predistorter for RF Power Amplifiers Using Dynamic Deviation Reduction-Based Volterra Series”, IEEE Transactions on Microwave Theory and Techniques 56(7), 1524‒1534, (2008).
  • [14] D. Sidorov, “Integral Dynamical Models: Singulatities, Signals and Control”, World Scientific Series on Nonlinear Science, Series A, Vol. 87, 2015
  • [15] R.N. Braithwaite, “Pruning strategies for a Volterra series model used in digital predistortion (DPD) of RF power amplifiers”, Proc. IEEE Topical Conf. RF/Microw. Power Amplif. Radio Wireless Appl. (PAWR), 1‒4, USA, (2017).
  • [16] X. Peng, X. Qiu, and F. Mu, “Digital Harmonic Canceling Algorithm for Power Amplifiers Based on Nonlinear Adaptive Filter”, Progress In Electromagnetics Research 65, 151–164, (2018).
  • [17] D. Rönnow, “pth-order inverse of the Volterra series for mul-tiple-input multiple-output non-linear dynamic systems”, IET Circuits Devices Syst. 12(4), 403‒412, (2018).
  • [18] M. Siwczyński and A. Drwal, “The nonlinear digital filter with feedback described in functional series”, Bull. Pol. Ac.: Tech., (2019)(in review).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4feb91a-0847-4a5a-8f1c-a80d7392cfed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.