PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Increasing the cost-effectiveness of in vitro research through the use of titanium in the device for measuring the electrical parameters of cells

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zwiększenie efektywności kosztowej prowadzeniabadań in vitropoprzez zastosowanie tytanu w urządzeniu do pomiaru parametrów elektrycznych komórek
Języki publikacji
EN
Abstrakty
EN
Currently, various methods are used to assess the biocompatibility of materials. After an in-depth and detailed review of the literature, the method used in the research was selected. As part of the experiments, a method based on the analysis of the values of electrical parameters of cell cultures measured in the presence of electrodes was used. The electrode is a structure made of a thin layer of metallization. It measures the change in resistance, impedance and capacity of a mixture of cells and the substance in which they are grown. The plate containing the electrode assembly is called the measurement matrix. Currently, commercially used test matrices are made of gold or platinum. However, their high price means that large-scale research is significantly limited. In order to increase the access to the widespread use of this method, it was decided that it was necessary to use cheaper materials, reducing the necessary costs of conducting experiments. Considering this, an attempt was made to use a different conductive material to build matrices compatible with the ECIS® Z-Theta measurement system. Their use would enable in vitro research on living cells. In the presented work, titanium was used as a material that may turn out to be an alternative to the materials currently used. Its application to the production of matrices will allow to study the influence of this metal on the behavior of cells.
Obecnie, do oceny biokompatybilności materiałów wykorzystywane są różne metody. Po dogłębnym i szczegółowym przeglądzie literatury wybrano metodę, którą wykorzystano podczas prac badawczych. W ramach przeprowadzonych eksperymentów wykorzystano metodę bazującą na analizie wartości parametrów elektrycznych kultur komórkowych, zmierzonych w obecności elektrod. Elektroda jest strukturą wykonaną w cienkiej warstwie metalizacji. Służy do pomiaru zmiany wartości rezystancji, impedancji oraz pojemności mieszaniny złożonej z komórek i substancji, w której są one hodowane. Płytka zawierająca zestaw elektrod nazywana jest matrycą pomiarową. Aktualnie, komercyjnie stosowane matryce testowe wykonane są ze złota lub platyny. Ich wysoka cena powoduje jednak, że prowadzenie badań na szeroką skalę jest znacząco ograniczone. Aby zwiększyć dostęp do powszechnego korzystania z tej metody zdecydowano, że koniecznym jest stosowanie tańszych materiałów, redukując niezbędne koszty prowadzenia eksperymentów. Zważywszy na to, podjęto próbę zastosowania innego materiału przewodzącego do budowy matryc kompatybilnych z systemem pomiarowym ECIS® Z-Theta. Ich użycie umożliwiłoby prowadzenie badań nad komórkami żywymi in vitro. W przedstawionej pracy jako materiał, który może okazać się alternatywą dla materiałów wykorzystywanych obecnie wykorzystano tytan. Jego zastosowanie do wytworzenia matryc pozwoli zbadać wpływ tego metalu na zachowanie komórek
Słowa kluczowe
Rocznik
Strony
62--66
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
  • Lublin University of Technology, Department of Electrical Engineering and Electrotechnologies, Lublin, Poland
Bibliografia
  • [1] Ananth H., Kundapur V., Mohammed H. S., Anand M., Amarnath G. S., Mankar S.: A review on biomaterials in dental implantology. International Journal of Biomedical Science 11(3), 2015, 113–120.
  • [2] Applied BioPhysics, Inc., Product Guide, [https://www.biophysics.com/whatIsECIS.php] (available: 26.11.2021).
  • [3] Gangadoo S., Chapman J.: Emerging biomaterials and strategies for medical applications: A review. Materials Technology 30, 2015, B3–B7 [http://doi.org/10.1179/1753555714Y.0000000206].
  • [4] Giaever I., Keese C. R.: Electric Cell-Substrate Impedance Sensing and Cancer Metastasis. Springer 17, 2012, 1–19 [http://doi.org/10.1007/978-94-007-4927- 6_1].
  • [5] Jiang G.: Design challenges of implantable pressure monitoring system. Frontiers in Neuroscience 4, 2010, 1–4 [http://doi.org/10.3389/neuro.20.002.2010].
  • [6] Kociubiński A., Zarzeczny D., Prendecka M., Pigoń D., Małecka-Massalska T.: Nichrome Capacitors on Polycarbonate Substrate for Monitoring Cell Culture Using Impedance Sensing Technique. Archives of Metallurgy and Materials 65, 2020, 493–496 [http://doi.org/10.24425/amm.2020.131752].
  • [7] Kociubiński A., Zarzeczny D., Szypulski M.: Kondensatory grzebieniowe z miedzi do monitorowania funkcji życiowych komórek hodowlanych. Przegląd Elektrotechniczny 1, 2018, 61–63 [http://doi.org/10.15199/48.2018.09.15].
  • [8] Kociubiński A., Zarzeczny D.: Nickel comb capacitors for real-time monitoring of cancer cell cultures. Przegląd Elektrotechniczny 9, 2020, 149–152 [http://doi.org/10.15199/48.2020.09.31].
  • [9] Kohane D. S., Langer R.: Biocompatibility and drug delivery systems. Chemical Science 1, 2010, 441–446 [http://doi.org/10.1039/c0sc00203h].
  • [10] Langer R., Tirrell D. A.: Designing materials for biology and medicine. Nature 428, 2004, 487–492 [http://doi.org/10.1038/nature02388].
  • [11] Meng E., Sheybani R.: Insight: implantable medical devices. Lab on a Chip 14, 2014, 3233–3240 [http://doi.org/10.1039/C4LC00127C].
  • [12] Menzies K. L., Jones L.: The Impact of Contact Angle on the Biocompatibility of Biomaterials. Optometry and Vision Science 87, 2010, 387–399 [http://doi.org/10.1097/OPX.0b013e3181da863e].
  • [13] Onuki Y., Bhardwaj U., Papadimitrakopoulos F., Burgess D. J.: A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response. Journal of Diabetes Science and Technology 2, 2008, 1003–1015 [http://doi.org/10.1177/193229680800200610].
  • [14] Patro S. G. K., Sahu K. K.: Normalization: A Preprocessing Stage. IARJSET 2(3), 2015, 20–22 [http://doi.org/10.17148/iarjset.2015.2305].
  • [15] Pennington M. R., Walle G. R. Van de, Smith G. A.: Electric Cell-Substrate Impedance Sensing To Monitor Viral Growth and Study Cellular Responses to Infection with Alphaherpesviruses in Real Time. MSphere 2, 2017, 1–12 [http://doi.org/10.1128/mSphere.00039-17].
  • [16] PN-EN ISO 10993-1:2010 Biologiczna ocena wyrobów medycznych, 2015, http://www.urpl.gov.pl/en/node/267 (available:26.11.2021).
  • [17] Porta M.: A Dictionary of Epidemiology (6 ed.). Oxford University Press, Oxford 2014 [http://doi.org/10.1093/acref/9780199976720.001.0001].
  • [18] Prendecka M., Małecka-Massalska T., Mlak R., Magdalena J., Osińska-Jaroszuk M., Jakubiak-Hulicz M., Leibold C., Bieser A., Wójcik W.: Effect of exopolysaccharide from Ganoderma applanatum on the electrical properties of mouse fibroblast cells line L929 culture using an electric cel-substrate impedance sensing (ECIS). Annals of Agricultural and Environmental Medicine 23, 2016, 293–297 [http://doi.org/10.5604/12321966.1203891].
  • [19] Rack H. J., Qazi J. I.: Titanium alloys for biomedical applications. Materials Science and Engineering C 26(8), 2006, 1269–1277 [http://doi.org/10.1016/j.msec.2005.08.032].
  • [20] Rozporządzenie Ministra Zdrowia z dnia 16 lutego 2016 r. w sprawie szczegółowych wymagań dotyczących planowania, prowadzenia, monitorowania i dokumentowania badania klinicznego wyrobu medycznego (Dz. U. z 2016 r. poz. 209).
  • [21] Saini M.: Implant biomaterials: A comprehensive review. World Journal of Clinical Cases 3, 2015, 52–57 [http://doi.org/10.12998/wjcc.v3.i1.52].
  • [22] Scholten K., Meng E.: Materials for microfabricated implantable devices: a review. Lab on a Chip 15, 2015, 4256–4272 [http://doi.org/10.1039/C5LC00809C].
  • [23] Stolwijk J. A., Matrougui K., Renken C. W., Trebak M.: Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements. Pflügers Archiv - European Journal of Physiology 467, 2015, 2193–2218 [http://doi.org/10.1007/s00424-014-1674-0].
  • [24] Szulcek R., Bogaard H. J., van Nieuw Amerongen G. P.: Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility. Journal of Visualized Experiments 85, 2014, 1–12 [http://doi.org/10.3791/51300].
  • [25] Veiga C., Davim J. P., Loureiro A. J. R.: Properties and applications of titanium alloys. Reviews on Advanced Materials Science 32, 2012, 133–148.
  • [26] Voiculescu I., Li F., Nordin A. N.: Impedance Spectroscopy of Adherent Mammalian Cell Culture for Biochemical Applications: A Review. IEEE Sensors Journal 21, 2021, 5612–5627 [http://doi.org/10.1109/JSEN.2020.3041708].
  • [27] Walkowiak B.: Biomedyczne skutki kontaktu tkanki z implantem. Inżynieria Biomateriałów 7, 2004, 38–42.
  • [28] Wegener J., Keese C. R., Giaever I.: Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Experimental Cell Research 259, 2000, 158–166 [http://doi.org/10.1006/excr.2000.4919].
  • [29] Wesolowski R. A., Wesolowski A. P., Petrova R. S.: Biomaterials. In: The World of Materials. Springer International Publishing, Cham 2020, 75–78 [http://doi.org/10.1007/978-3-030-17847-5_12].
  • [30] Williams D. F.: On the mechanisms of biocompatibility. Biomaterials 29, 2008, 2941–2953 [http://doi.org/10.1016/j.biomaterials.2008.04.023].
  • [31] Xiao C., Luong J. H. T.: On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnology Progress 19, 2003, 1000–1005 [http://doi.org/10.1021/bp025733x].
  • [32] Xu Y., Xie X., Duan Y., Wang L., Cheng Z., Cheng J.: A review of impedance measurements of whole cells. Biosensors and Bioelectronics 77, 2016, 824–836 [http://doi.org/10.1016/j.bios.2015.10.027].
  • [33] Zarzeczny D.: Projekt i technologia kondensatorów grzebieniowych do monitorowania hodowli komórek. In: Problemy Współczesnej Inżynierii – Wybrane zagadnienia elektroniki i inżynierii biomedycznej. Politechnika Lubelska, Lublin, 2017, 155–168, [http://bc.pollub.pl/Content/13165/PDF/sneie.pdf] (available: 26.11.2021).
  • [34] Zarzeczny D. A.: Thin film capacitors made of various metals for impedance sensing technique. Proc. SPIE 11176, 2019, 1117654 [http://doi.org/10.1117/12.2536787].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4fc9c76-9cc0-46c0-a8d0-2de4bb08b983
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.