Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main goal of this article was the analysis of the changes of mechanical properties, thickness and histology of the cartilage in different regions of the femur head in advanced stage of the osteoarthritis. Methods: The study material consisted of cylindrical specimens (9.7 mm) prepared form proximal epiphysis of the human femur bone after hip arthroplasty. The thickness was determined from the reconstruction of the specimen from microtomography (SkyScan 1172, Bruker®) images. Mechanical properties of the cartilage tissue were identified in static indentation test conducted the use of MTS® Synergie 100 testing machine. Histological study enabled us to determine cartilage total thickness as well as location and orientation of the collagen fibers. Results: Depending on the region of the head, the cartilage tissue thickness was in the range (0.74–2.23 mm). The lowest thickness values were obtained for the R5 region and the lowest for R4. Samples from R1–R4 regions differ by 24%. Measurements of cartilage tissue indentation, determined with the help of Hayes’ formula, showed that the values of mechanical parameters in regions R1, R2, R3 and R5 have similar values (the difference between them is about 5.5%). Region R4, which had the smallest thickness, also had the lowest values of mechanical parameters. Conclusions: Using κ coefficients, proposed by Hayes, enabled us to obtain similar values of mechanical parameters in the regions R1, R2, R3 and R5, despite differences in cartilage tissue thickness. The R4 region, which had the weakest mechanical parameters, was characterized by the strongest reduction of the articular cartilage tissue, which was accompanied by an unformed mass of cartilage residue originating from the abraded surface and bursa fluid.
Czasopismo
Rocznik
Tom
Strony
143--152
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
- Department of Regenerative and Restoration Medicine in Orthopedics, Department of Orthopaedics and Traumatology, Wrocław Medical University, Wrocław, Poland
autor
- Division of Histology and Embryology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
autor
- Department of Regenerative and Restoration Medicine in Orthopedics, Department of Orthopaedics and Traumatology, Wrocław Medical University, Wrocław, Poland
autor
- Clinic of Orthopaedics and Traumatology, Wrocław University Hospital, Wrocław, Poland
autor
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
- [1] ATHANASIOU K.A., ROSENWASSER M.P., BUCKWALTER J.A., MALININ T.I., MOW V.C., Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage, J. Orthop. Res., 1991, 9, 330–340.
- [2] BADER D.L., BOWKER P., Mechanical characteristics of skin and underlying tissues in vivo, Biomaterials, 1983, 305–308.
- [3] BOUGHTON O.R., MA S., ZHAO S., ARNOLD M., LEWIS A., HANSEN U., COBB J.P., GIULIANI F., ABEL R.L., Measuring bone stiffness using spherical indentation, PLoS One, 2018, 12, 13 (7), e0200475.
- [4] HALLORAN J.P., SIBOLE S., VAN DONKELAAR C.C., VAN TURNHOUT M.C., OOMENS C.W., WEISS J.A., GUILAK F., ERDEMIR A., Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint and microscale computational models, Ann. Biomed. Eng., 2012, 40 (11), 2456–2474.
- [5] HAYES W.C., KEER L.M., HERRMANN G., MOCKROS L.F., A mathematical analysis for indentation tests of articular cartilage, J. Biomech., 1972, 5 (5), 541–551.
- [6] JIN H., LEWIS J.L., Determination of Poisson’s ratio of articular cartilage by indentation using different-sized indenters, J. Biomech. Eng., 2004, 126 (2), 138–145.
- [7] JURAS V.1., BITTSANSKY M., MAJDISOVA Z., SZOMOLANYI P., SULZBACHER I., GÄBLER S., STAMPFL J., SCHÜLLER G., TRATTNIG S., In vitro determination of biomechanical properties of human articular cartilage in osteoarthritis using multiparametric MRI, J. Magn. Reson., 2009, 197 (1), 40–47.
- [8] KEUTTNER K., GOLDBERG V.M., Osteoarthritic Disorders, American Academy of Orthopaedic Surgeons, Rosemont, 1995, XXI–XXV.
- [9] KNECHT S., VANWANSEELE B., STÜSSI E., A review on the mechanical quality of articular cartilage – implications for the diagnosis of osteoarthritis, Clin. Biomech., 2006, 21 (10), 999–1012.
- [10] KOT M., KOBIELARZ M., MAKSYMOWICZ K., Assessment of mechanical properties of arterial calcium deposition, Transactions of Famena, 2011, 35 (3), 49–56.
- [11] KRISHNAN R., PARK S., ECKSTEIN F., ATESHIAN G.A., Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress, J. Biomech. Eng., 2003, 125 (5), 569–577.
- [12] KULEJ M., DRAGAN S., KURYSZKO J., KUROPKA P., WIDUCHOWSKI W., DRAGAN S., Micromorphological assessment of bone tissue remodeling in various hip degeneration conditions, Adv. Clin. Exp. Med., 2020, 29 (1), 51–61.
- [13] KURRAT H.J., OBERLÄNDER W., The thickness of the cartilage in the hip joint, J. Anat., 1978, 126 (Pt 1), 145–155.
- [14] MANKIN H.J., MOW V.C., BUCKWALTER J.A., IANNOTTI J.P., Form and function of articular cartilage, [in:] S.R. Simon (Ed.), Orthopaedic Basic Science, Rosemont, IL, American Academy of Orthopaedic Surgeons, 1994, 1–44.
- [15] MOW V.C., GIBBS M.C., LAI W.M., ZHU W.B., ATHANASIOU K.A., Biphasic indentation of articular cartilage – II. A numerical algorithm and an experimental study, J. Biomech., 1989, 22 (8–9), 853–861.
- [16] NEVITT M.C., LANE N.E., SCOTT J.C., HOCHBERG M.C., PRESSMAN A.R., GENANT H.K., CUMMINGS S.R., Radiographic osteoarthritis of the hip and bone mineral density. The Study of Osteoporotic Fractures Research Group, Arthritis Rheum., 1995, 38 (7), 907–916.
- [17] NIEDERAUER G.G., NIEDERAUER G.M., CULLEN L.C., JR., ATHANASIOU K.A., THOMAS J.B., NIEDERAUER M.Q., Correlation of cartilage stiffness to thickness and level of degeneration using a handheld indentation probe, Ann. Biomed. Eng., 2004, 32 (3), 352–359.
- [18] NIKODEM A., ŚCIGAŁA K., Principles of osteoarthritis – its definition, character, derivation and modality-related recognition, InTech Europe Rijeka, Croatia, 2012, ISBN: 978-953- -51-0063-8.
- [19] NIKODEM A., Correlations between structural and mechanical properties of human trabecular femur bone, Acta Bioeng. Biomech., 2012, 14 (2), 37–46.
- [20] RICHARD F., VILLARS M., THIBAUD S., Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation, J. Mech. Behav. Biomed. Mater., 2013, 24, 41–52.
- [21] SOPHIA FOX A.J., BEDI A., RODEO S.A., The basic science of articular cartilage: structure, composition, and function, Sports Health., 2009, 1 (6), 461–468.
- [22] STEMPIN R., DRAGAN S.Ł., KULEJ M., FILIPIAK J., DRAGAN S., Effect of elliptical deformation of the acetabulum on the stress distribution in the components of hip resurfacing surgery, Acta Bioeng. Biomech., 2017, 19 (4), 35–41.
- [23] STOLZ M., RAITERI R., DANIELS A.U., VAN LANDINGHAM M.R., BASCHONG W., AEBI U., Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy, Biophys. J. 2004, 86 (5), 3269-3283.
- [24] TOMANIK M., NIKODEM A., FILIPIAK J., Microhardness of human cancellous bone tissue in progressive hip osteoarthritis, J. Mech. Behav. Biomed. Mater., 2016, 64, 86–93.
- [25] VANNAH W.M., CHILDRESS D.S., Indentor tests and finite element modeling of bulk muscular tissue in vivo, J. Rehabil. Res. Dev., 1996, 33 (3), 239–252.
- [26] VENTURATO C., PAVAN P.G., FORESTIERO A., CARNIEL E.L., NATALI A.N., Investigation of the biomechanical behaviour of articular cartilage in hindfoot joints, Acta Bioeng. Biomech., 2014, 16 (2), 57–65.
- [27] VIDAL-LESSO A., LEDESMA-OROZCO E., DAZA-BENÍTEZ L., LESSO-ARROYO R., Mechanical characterization of femoral cartilage under unicompartimental osteoarthritis, Ingenieria Mecanica, 2014, 4 (6), 239–246.
- [28] VIGNON E., ARLOT M., MEUNIER P., VIGNON G., Quantitative histological changes in osteoarthritic hip cartilage: morphometric analysis of 29 osteoarthritic and 26 normal human femoral heads, Clinical Orthopaedics and Related Research, 1974, 103, 269–278.
- [29] WOJTKOW M., KIELBOWICZ Z., BIEZYNSKI J., PEZOWICZ C., Quantitative and qualitative assessment of the impact of osteoporosis on endplate layers, Biocybern. Biomed. Eng., 2019, 39, 797–805.
- [30] ZHANG M., ZHENG Y.P., MAK A.F., Estimating the effective Young’s modulus of soft tissues from indentation tests – nonlinear finite element analysis of effects of friction and large deformation, Med. Eng. Phys., 1997, 19 (6), 512–517.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4faaaac-7871-4855-b6c4-bd91a8981c46