PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A theoretical analysis of contemporary vessel navigational systems: assessing the future role of the human element for unmanned vessels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article aims to investigate the contemporary challenges of electronic navigation and assess the appropriate amendments should autonomous vessel technology becomes widespread in the near future. Vessel control systems and maritime communication are essential and sending and receiving alarm signals is critical to contemporary ship navigation. Numerous location and shipping information systems, such as GPS, Loran-C, and Decca, have arisen in recent decades to improve navigational safety. Other systems, including VHF and Inmarsat, have been developed to enhance the efficiency of maritime communication on board and to transmit risk and safety-related data. Additionally, safe navigation requires systems like Navtex, EGS, DSC, Epirb, and others [1].
Twórcy
autor
  • University of Piraeus, Piraeus, Greece
  • World Maritime University, Malmö, Sweden
autor
  • University of Piraeus, Pireas, Greece
Bibliografia
  • [1] Seaton, J. and Smith, P.: GMDSS for navigators. Routledge. (2013). DOI: https://doi.org/10.4324/9781315042688.
  • [2] Baker, C. C., and D. B. McCafferty.: Accident database review of human element concerns: What do the results mean for classification. Proc. Int Conf.‘Human Factors in Ship Design and Operation, RINA (Feb. 2005).
  • [3] Rothblum, A.: Human error and marine safety. National Safety Council Congress and Expo, Orlando, FL. Vol. 7. (2000).
  • [4] Saliba, M., Frantzi S., and van Beukering P.: Shipping spills and plastic pollution: A review of maritime governance in the North Sea. Marine Pollution Bulletin 181 (2022): 113939. DOI: https://doi.org/10.1016/j.marpolbul.2022.113939.
  • [5] Hetherington, C., Flin, R. and Mearns, K..: Safety in shipping: The human element. Journal of safety research, 37(4), pp.401-411. (2006). DOI: https://doi.org/10.1016/j.jsr.2006.04.007.
  • [6] Gao, Z., Ali, L., Wang, C., Liu, R., Wang, C., Qian, C., ... & Meng, F.: Real-Time Non-Contact Millimeter Wave Radar-Based Vital Sign Detection. Sensors, 22(19), 7560, (2022). DOI: https://doi.org/10.3390/s22197560.
  • [7] Griffiths, H., Cohen, L., Watts, S., Mokole, E., Baker, C., Wicks, M. and Blunt, S.: Radar spectrum engineering and management: Technical and regulatory issues. Proceedings of the IEEE, 103(1), pp.85-102. (2014). DOI: 10.1109/JPROC.2014.2365517.
  • [8] Matuszewski, J.: The radar signature in recognition system database. In 2012 19th International Conference on Microwaves, Radar & Wireless Communications (Vol. 2, pp. 617-622). IEEE. (2012). DOI: 10.1109/MIKON.2012.6233565.
  • [9] Knott, E. F., Schaeffer, J. F., & Tulley, M. T.: Radar cross section. SciTech Publishing. (2004).
  • [10] Skolnik, M.: Radar handbook. McGraw-Hill Education. (2008).
  • [11] Zhang, X., Wang, C., Jiang, L., An, L. and Yang, R.: Collision-avoidance navigation systems for Maritime Autonomous Surface Ships: A state of the art survey. Ocean Engineering, 235, p.109380. (2021). DOI: https://doi.org/10.1016/j.oceaneng.2021.109380.
  • [12] Lin, B. and Huang, C.H.: Comparison between ARPA radar and AIS characteristics for vessel traffic services. Journal of marine science and technology, 14(3), p.7. (2006). DOI: 10.51400/2709-6998.2072.
  • [13] Ma, F., Wu, Q., Yan, X., Chu, X., & Zhang, D.: Classification of automatic radar plotting aid targets based on improved fuzzy C-means. Transportation research part c: emerging technologies, 51, 180-195. (2015). DOI: https://doi.org/10.1016/j.trc.2014.12.001.
  • [14] Zhao, L. and Fu, X.: A Method for Correcting the Closest Point of Approach Index During Vessel Encounters Based on Dimension Data From AIS. IEEE Transactions on Intelligent Transportation Systems. (2021). DOI: 10.1109/TITS.2021.3127223.
  • [15] Sorg, H.W.: From Serson to Draper—Two centuries of gyroscopic development. Navigation, 23(4), pp.313-324. (1976). DOI: https://doi.org/10.1002/j.2161-4296.1976.tb00756.x.
  • [16] Usubamatov, R.: Gyroscopic Effects in Engineering. In Theory of Gyroscopic Effects for Rotating Objects (pp. 1-15). Springer, Singapore. (2020). DOI: 10.1007/978-981-15-6475-8_1.
  • [17] Myklestad, N.O.: Fundamentals of vibration analysis. Courier Dover Publications. (2018).
  • [18] Ilčev, D.S.: New Aspects of Progress in the Modernization of the Maritime Radio Direction Finders (RDF). Transactions on Maritime Science, 10(1), pp.68-83. (2021). DOI: https://doi.org/10.7225/toms.v10.no01.005.
  • [19] Straser, V., Cataldi, D. and Cataldi, G.: Radio Direction Finding (RDF)-Geomagnetic Monitoring Study of the Himalaya Area in Search of Pre-Seismic Electromagnetic Signals. Asian Review of Environmental and Earth Sciences, 6(1), pp.16-27. (2019). DOI: 10.20448/journal.506.2019.61.16.27.
  • [20] Hashimoto, H., Makino, H., Yoshioka, H. and Matsuda, A.: Ship-stopping algorithm utilizing VecTwin rudder system for automatic collision prevention. Ocean Engineering, 251, p.111098. (2022). DOI: https://doi.org/10.1016/j.oceaneng.2022.111098.
  • [21] Rachman, D.M., Aoki, Y., Miyauchi, Y., Umeda, N. and Maki, A.: Experimental Low-speed Positioning System with VecTwin Rudder for Automatic Docking (Berthing). arXiv preprint arXiv:2212.09880. (2022). DOI: https://doi.org/10.48550/arXiv.2212.09880.
  • [22] Li, S., Liu, J., Negenborn, R.R. and Wu, Q.: Automatic docking for underactuated ships based on multi-objective nonlinear model predictive control. IEEE Access, 8, pp.70044-70057. (2020). DOI: 10.1109/ACCESS.2020.2984812.
  • [23] Franchi, M., Ridolfi, A. and Pagliai, M.: A forward-looking SONAR and dynamic model-based AUV navigation strategy: Preliminary validation with FeelHippo AUV. Ocean Engineering, 196, p.106770. (2020). DOI: https://doi.org/10.1016/j.oceaneng.2019.106770.
  • [24] Yang, D., Cheng, C., Wang, C., Pan, G. and Zhang, F.: Side-scan sonar image segmentation based on multi-channel CNN for AUV navigation. Frontiers in Neurorobotics, 16, p.928206. (2022). DOI: 10.3389/fnbot.2022.928206.
  • [25] Wang, K., Tang, S., Ke, J. and Hou, Y.: A Small Active Magnetic Antenna of Loran-C. IEEE Sensors Journal. (2022). DOI: 10.1109/JSEN.2022.3222577.
  • [26] Honglei, Q., Xiaoqin, J., Li, C. and Jintao, Y.: November. MEDLL-based method of ground-wave and cycle identification for Loran-C signal. In 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI) (pp. 114-123). IEEE. (2019). DOI: 10.1109/ICEMI46757.2019.9101476.
  • [27] Kim, Y., Fang, T.H., Kim, D., Seo, K. and Park, S.H.: Loran-C Multiple Chain Positioning using ToA Measurements. Journal of Navigation and Port Research, 43(1), pp.23-32. (2019). DOI: http://dx.doi.org/10.5394/KINPR.2019.43.1.23.
  • [28] Bhardwaj, A.: Terrestrial and Satellite-Based Positioning and Navigation Systems—A Review with a Regional and Global Perspective. Engineering Proceedings, 2(1), p.41. (2020). DOI: https://doi.org/10.3390/ecsa-7-08262.
  • [29] Otto, L.: Global challenges in maritime security. Springer. (2020).
  • [30] Yang, C.S.: Maritime shipping digitalization: Blockchain-based technology applications, future improvements, and intention to use. Transportation Research Part E: Logistics and Transportation Review, 131, pp.108-117. (2019). DOI: https://doi.org/10.1016/j.tre.2019.09.020.
  • [31] Bai, X., Li, B., Xu, X. and Xiao, Y.: A Review of Current Research and Advances in Unmanned Surface Vehicles. Journal of Marine Science and Application, 21(2), pp.47-58. (2022). DOI: https://doi.org/10.1007/s11804-022-00276-9.
  • [32] Boviatsis, M. and Vlachos, G.: Sustainable Operation of Unmanned Ships under Current International Maritime Law. Sustainability, 14(12), p.7369. (2022). DOI: https://doi.org/10.3390/su14127369.
  • [33] Munim, Z.H. and Haralambides, H.: Advances in maritime autonomous surface ships (MASS) in merchant shipping. Maritime Economics & Logistics, pp.1-8. (2022). DOI: https://doi.org/10.1057/s41278-022-00232-y.
  • [34] Vidan, P.E.R.O., Bukljaš, M.I.H.A.E.L.A., Pavić, I. and Vukša, S.: Autonomous Systems & Ships-Training and Education on Maritime Faculties. In 8th International Maritime Science Conference. (2019).
  • [35] Porathe, T.: Where does the pilot go when the autonomous ship has no bridge? MASS Routing Service and smart Local Information Centres. In Proceedings of the Autonomous Ship Conference 2022, National Maritime Museum, Greenwich, London, 31 March-1 April 2022. Royal Institution of Naval Architects.
  • [36] IMO.: Autonomous shipping. (2022). Available at: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx, last assessed: 28-12-2022.
  • [37] Rybczak, M. and Gierusz, W.: Maritime Autonomous Surface Ships in Use with LMI and Overriding Trajectory Controller. Applied Sciences, 12(19), p.9927. (2022). DOI: https://doi.org/10.3390/app12199927.
  • [38] Bratić, K., Pavić, I., Vukša, S. and Stazić, L.: A review of autonomous and remotely controlled ships in maritime sector. Transactions on Maritime Science, 8(02), pp.253-265. (2019). DOI: https://doi.org/10.7225/toms.v08.n02.011.
  • [39] Meyer, E., Heiberg, A., Rasheed, A. and San, O.: COLREG-compliant collision avoidance for unmanned surface vehicle using deep reinforcement learning. IEEE Access, 8, pp.165344-165364. (2020). DOI: 10.1109/ACCESS.2020.3022600.
  • [40] Kim, H.G., Yun, S.J., Choi, Y.H., Ryu, J.K. and Suh, J.H.: Collision Avoidance Algorithm Based on COLREGs for Unmanned Surface Vehicle. Journal of Marine Science and Engineering, 9(8), p.863. (2021). DOI: https://doi.org/10.3390/jmse9080863.
  • [41] Zolich, A., Palma, D., Kansanen, K., Fjørtoft, K., Sousa, J., Johansson, K.H., Jiang, Y., Dong, H. and Johansen, T.A.: Survey on communication and networks for autonomous marine systems. Journal of Intelligent & Robotic Systems, 95(3), pp.789-813. (2019). DOI: https://doi.org/10.1007/s10846-018-0833-5.
  • [42] Wright, R.G.: Unmanned and autonomous ships: an overview of mass. Routledge. (2020).
  • [43] Zhao, S., Li, S., Qi, L. and Da Xu, L.: Computational intelligence enabled cybersecurity for the internet of things. IEEE Transactions on Emerging Topics in Computational Intelligence, 4(5), pp.666-674. (2020). DOI: 10.1109/TETCI.2019.2941757.
  • [44] Pitsikalis, M., Bereta, K., Vodas, M., Zissis, D. and Artikis, A.: Event Processing for Maritime Situational Awareness. In Big Data Analytics for Time-Critical Mobility Forecasting (pp. 255-274). Springer, Cham. (2020). DOI: 10.1007/978-3-030-45164-6_9.
  • [45] Gabbar, H.A.: Fast Charging for Marine Transportation. In Fast Charging and Resilient Transportation Infrastructures in Smart Cities (pp. 147-163). Springer, Cham. (2022). DOI: 10.1007/978-3-031-09500-9_9.
  • [46] Munim, Z.H., Dushenko, M., Jimenez, V.J., Shakil, M.H. and Imset, M.: Big data and artificial intelligence in the maritime industry: a bibliometric review and future research directions. Maritime Policy & Management, 47(5), pp.577-597. (2020). DOI: https://doi.org/10.1080/03088839.2020.1788731.
  • [47] Krishnan, S., Balas, V.E., Golden, J., Robinson, Y.H., Balaji, S. and Kumar, R. eds.: Handbook of research on blockchain technology. Academic Press. (2020).
  • [48] Ramos, M.A., Utne, I.B. and Mosleh, A.: Collision avoidance on maritime autonomous surface ships: Operators’ tasks and human failure events. Safety science, 116, pp.33-44. (2019). DOI: https://doi.org/10.1016/j.ssci.2019.02.038.
  • [49] Inal, O.B., Charpentier, J.F. and Deniz, C.: Hybrid power and propulsion systems for ships: Current status and future challenges. Renewable and Sustainable Energy Reviews, 156, p.111965. (2022). DOI: https://doi.org/10.1016/j.rser.2021.111965.
  • [50] Thombre, S., Zhao, Z., Ramm-Schmidt, H., García, J.M.V., Malkamäki, T., Nikolskiy, S., Hammarberg, T.,Nuortie, H., Bhuiyan, M.Z.H., Särkkä, S. and Lehtola, V.V.: Sensors and ai techniques for situational awareness in autonomous ships: A review. IEEE transactions on intelligent transportation systems. (2020). DOI: 10.1109/TITS.2020.3023957.
  • [51] Katsikas, S. and Kavallieratos, G.: Cybersecurity of the Unmanned Ship. In Cybersecurity Issues in Emerging Technologies (pp. 21-42). CRC Press. (2021).
  • [52] Zhang, M., Zhang, D., Yao, H. and Zhang, K.: A probabilistic model of human error assessment for autonomous cargo ships focusing on human–autonomy collaboration. Safety science, 130, p.104838. (2020). DOI: https://doi.org/10.1016/j.ssci.2020.104838.
  • [53] Wróbel, K., Gil, M. and Chae, C.J.: On the influence of human factors on safety of remotely-controlled merchant vessels. Applied Sciences, 11(3), p.1145. (2021). DOI: https://doi.org/10.3390/app11031145.
  • [54] Boviatsis, M., Polemis, D. and Alexopoulos, A.: An Assessment of the Most Sustainable Marine Fuel Based on the Present Regulatory Framework and Future Trends. Journal of Shipping and Ocean Engineering 12 (2022) 43-52 DOI: 10.17265/2159-5879/2022.02.002.
  • [55] Anwar, F., Khan, B.U.I., Kiah, M.L.B.M., Abdullah, N.A. and Goh, K.W.: A Comprehensive Insight into Blockchain Technology: Past Development, Present Impact and Future Considerations. International Journal of Advanced Computer Science and Applications, 13(11). (2022).
  • [56] Boviatsis, M., Alexopoulos, A.B. & Vlachos, G.P.: Evaluation of the response to emerging environmental threats, focusing on carbon dioxide (CO2), volatile organic compounds (VOCs), and scrubber wash water (SOx). Euro-Mediterr J Environ Integr 7, 391–398 (2022). DOI: https://doi.org/10.1007/s41207-022-00325-3.
  • [57] Patraiko, D., Wake, P. and Weintrit, A.: 5e-Navigation and the Human Element. In Marine Navigation and Safety of Sea Transportation (pp. 55-60). CRC Press. (2009).
  • [58] Weintrit, A. and Neumann, T. eds.: Advances in marine navigation and safety of sea transportation. CRC Press. (2019).
  • [59] Formela, K., Weintrit, A. and Neumann, T.: Overview of definitions of maritime safety, safety at sea, navigational safety and safety in general. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 13(2). (2019). DOI: 10.12716/1001.13.02.03.
  • [60] Bauk, S., Kapidani, N., Sousa, L., Lukšić, Ž. and Spuža, A.: Advantages and disadvantages of some unmanned aerial vehicles deployed in maritime surveillance. In Maritime Transport VIII: proceedings of the 8th International Conference on Maritime Transport: Technology, Innovation and Research: Maritime Transport'20 (p. 91). Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria Nàutiques. (2020).
  • [61] Darousos, E.F., Mejia, M.Q. and Visvikis, I.D.: Sustainability, maritime governance, and business performance in a self-regulated shipping industry: A study on the BIMCO Shipping KPI Standard. In The Routledge Handbook of Maritime Management (pp. 98-108). Routledge. (2019).
  • [62] Karlis, T. Maritime law issues related to the operation of unmanned autonomous cargo ships. WMU J Marit Affairs 17, 119–128 (2018). https://doi.org/10.1007/s13437-018-0135-6.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4f93de4-41e4-4d48-86a5-335dc8a73878
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.