PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Mechanical, and Material Factors on the Biological Adaptation Processes of the Femoral Bone Implants

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study covers some aspects of the issue of determination of mutual connections between the mechanical and material factors, as well the biological implant adaptation processes. The main objective of the operation was adopted to develop models of cementless hip prosthesis company Fitmore Zimmer, taking into account the heterogeneity of material properties of bone tissue. These models were loaded in particular stages of the human gate and then they were used for the analysis of stress changes. The identification of the relations between the mechanical properties of osseous tissue required the conducting of computer simulations by means of the Finite Element Method (FEM).
Twórcy
autor
  • Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Faculty of Materials Engineering and Metallurgy graduate, 8 Krasińskiego Str., 40-019 Katowice, Poland
Bibliografia
  • [1] A. Jasik, J. Okrajni, Attempt to evaluate the influence of the thickness of a surgical cement layer on adaptation processes of endoprosthesis stems. Problems of modern techniques in aspect of engineering and education. Monography 261-266. Pedagogical University Cracow (2006).
  • [2] A. Jasik, S. Ziemba, M. Plaza, Methodology of estimation of the hest flow during endoprosthesoplasty. Engineering of Biomaterials 10, 69-72 (2007).
  • [3] J. Okrajni, A. Jasik, D. Kusz The influence of material property nonhomogenity and mode of loading on the effort of femur model components. Acta Bioeng Biomech 3, Supplement 2, 379-386, Wroclaw University of Technology Publisher, Wrocław (2001).
  • [4] A. Jasik, M. Jabłońska, Mutual connections between mechanical and material factors, and the biological processes of implants adaptation. Advances in bio-mechanical systems and materials. Eds. A. Ochsner, H. Altenbach. Cham, Springer (2013), 139-146, Advanced Structured Materials 40, 1869-8433 (2013).
  • [5] L. Chen, H. He, Y. Li, T. Li, X. Guo, R. Wang, Finite element analysis of stress at implant−bone interface of dental implants with different structures, Trans. Nonferrous Met. Soc. China 211, 602−1610 (2011).
  • [6] G. Bergmann, F. Graichena, A. Rohlmann, A. Bender, B. Heinleina, G. N. Duda, M. O. Heller a and M. M. Morlock, Realistic loads for testing hip implants, Bio-Medical Materials and Engineering 20, 65-75 (2010).
  • [7] L. Zhi-Qiang, G. Yuan-Xian, Z. Hong-Wu, Subject-specific finite element simulation of bone grafting procedure for osteonecrosis of femoral head, Multidiscipline Modeling in Mat. and Str.4, 359-368 (2008).
  • [8] S. M. Han, J. U. Chu, S. H. Park, J. S. Kim, H. J. Chun, K. Choi, I. Youn Finite element analysis of mechanical stability of ceramic acetabular components and evaluation of rom in articulating hip joints. JBSE 6, 3, 173-182 (2011).
  • [9] A. Jasik, The mechanical properties of orthopedic implants as a result of the impact of material factors and adaptation processes, Doctoral thesis, Katowice (2004).
  • [10] P. Catalfamo Formento, R. Acevedo, S. Ghoussayni, D. Ewins, Gait event detection during stair walking using a rate gyroscope, Sensors 14, 5470-5485 (2014).
  • [11] S. Shankar, M. Manikandan, Dynamic contact analysis of total hip prosthesis during stumbling cycle, Journal of Mechanics in Medicine and Biology Vol. 14, No. 3 (2014)
  • [12] S. M. H. Sithi Shameem Fathima, R. S. D. Wahida Banu, Human gait recognition using silhouettes, International Journal of Applied Engineering Research 10, 3, 5443-5454 (2015).
  • [13] G. Stan; H. Orban, Human gait and postural control after unilateral total knee arthroplasty, MAEDICA - a Journal of Clinical Medicine 9 (4), 356-360 (2014).
  • [14] A.T.M. Phillips, C.C. Villette, L.Modenese, Femoral bone mesoscale structural architecture prediction using musculoskeletal and finite element modelling. International Biomechanics 2, 1, 43-61(2015).
  • [15] Z. Miller Z, M.B. Fuchs, A. Mircea, Trabecular bone adaptation with an orthotropic material model. J Biomech. 35, 247-256 (2002).
  • [16] B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjólfsson, M. Viceconti, Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech. 23,135-146 (2008).
  • [17] F. Taddei, S. Martelli, B. Reggiani, L. Cristofolini, M. Viceconti, Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties. IEEE Trans Biomed Eng. 53, 2194-2200 (2006).
  • [18] R. Huiskes, H. Weinans, H. J. Grootenboer, M. Dalstra, B. Fudala, T. J. Slooff, Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech. 11/12, 1135-1150 (1987).
  • [19] M. Czyż, K. Ścigała, R. Będziński, W. Jarmundowicz, Finite element modelling of the cervical spinal cord injury - clinical assessment. Acta of Bioengineering and Biomechanic 14, 4 (2012).
  • [20] C. Liang-Jian, H. Hao, L. Yi-Min, L. Ting, G. Xiao-Ping, W. Rui-Fang, Finite element analysis of stress at implant−bone interface of dental implants with different structures. Trans. Nonferrous Met. Soc. China 21,1602−1610 (2011).
  • [21] Sahin S, Cehreli M. C, Yalcm E. The influence of functional forces on the biomechanics of implant-supported prostheses - A review [J]. J Dent. 20, 271−282 (2002).
  • [22] G. Eskitascioglu, A. Usumez, M. Sevimay, E. Soykan, E. Unsal, The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. The Journal Of Prosthetic Dentistry 91, 2, 144-150 (2004).
  • [23] R. Staszkiewicz, M. Poznański, M. Ozimek, Biomechaniczna charakterystyka obciążeń stawu biodrowego u kobiet, Proceedings of the 4th Polish Scientific Conference „Biomechanics ‘99”. Wrocław- Polanica Zdrój (1999).
  • [24] A. Jakubowicz, Z. Orłoś, Wytrzymałość materiałów, Wyd. Naukowo- Techniczne. Warszawa 1968.
  • [25] R. Bombelli: Osteoarthritis of the Hip. Springer-Verlag, Berlin-Heidelberg-New York 1983.
  • [26] Information on http://www.medgal.com.pl (September 2013)
  • [27] F. Liu, J. Fisher, Z. Jin: Effect of motion inputs on the wear prediction of artificial hip joints, Tribology International 63, 105-114 (2013).
  • [28] L. Mattei, F. DiPuccio, B. Piccigallo, E. Ciulli: Lubrication and wear modelling of artificial hip joints: A review, Tribology International 44, 532-549 (2011).
  • [29] A. Tudor, T. Laurian, V. M.Popescu: The effect of clearance and wear on the contact pressure of metal on polyethylene hip prostheses, Tribology International 63 (2013)158-168.
  • [30] A. Budzyński, Krótki wstęp do zastosowania metody elementów skończonych (MES) do numerycznych obliczeń inżynierskich, Publikacja Koła Naukowego Solid Edge Uniwersytetu Technologiczno-Przyrodniczego. Bydgoszcz 2006.
  • [31] C. C. Spyrakos, Finite element Modeling in engineering practice. Includes examples with Algor. West Virginia University Press Morgantown, WV (1994) ISBN: 0-9641939-1-4.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4f1f2b1-7497-483d-ad5c-19d4840fb133
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.