PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated precipitable water from GPS observations and CIMEL sunphotometer measurements at CGO Belsk

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes results of integrated precipitable water co-located measurements from two techniques: GPS solution and CIMEL-318 sun-photometer. Integrated Precipitable Water (IPW) is an important meteorological parameter and is derived from GPS tropospheric solutions for GPS station at Central Geophysical Observatory (CGO), Polish Academy of Sciences (PAS), Belsk and compared with sunphotometer (CIMEL-318 device by Cimel Electronique) data provided by Aerosol Robotic Network (AERONET). Two dedicated and independent GPS solutions: network solution in the sub-network of European Permanent Network (EPN) and precise point positioning solution have been made to obtain tropospheric delays. The quality of dedicated tropospheric solutions has been verified by comparison with EPN tropospheric combined product. Several IPW comparisons and analyses revealed systematic difference between techniques (difference RMS is over 1 mm). IPW bias changes with season: annual close to 1 mm IPW (and semi-annual term also present). IPW bias is a function of atmospheric temperature. Probable cause of this systematic deficiency in solar photometry as IPW retrieval technique is a change of optical filter characteristics in CIMEL.
Rocznik
Tom
Strony
46--65
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Geodesy and Geodetic Astronomy, Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
autor
  • Department of Geodesy and Geodetic Astronomy, Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, ul. Księcia Janusza 64, 01-452 Warsaw, Poland
Bibliografia
  • [1] Alexandrov, M.A., Schmid, B., Turner, D.D., Cairns, B., Oinas, V., Lacis, A.A., Gutman, S.I., Westwater, E.R., A. Smirnov & J. Eilers (2009). Columnar water vapor retrievals from MFRSR data, J. Geophys. Res., 114, D02306, DOI:10.1029/2008JD010543
  • [2] Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., & R. Ware (1992). GPS Meteorology: Remote Sensing of Atmospheric Water Vapour using the Global Positioning System, J. Geophys. Res., 97, pp. 15 787-15 801
  • [3] Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R.A., Rocken, C., & R. Ware (1994). GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, Journal of Applied Meteorology, Vol. 33, pp. 379-386
  • [4] Böhm, J. & Schuh, H., (2013). Atmospheric Effects in Space Geodesy, Springer Heidelberg New York Dordrecht London, DOI:10.1007/978-3-642-36932-2
  • [5] Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. & G. Elgered (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Science, 20, pp. 1593-1607
  • [6] Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., Van Hove, T., Ware, R., McClusky, S., Herring, T. A. & King, R. W. (1996). GPS meteorology: direct estimation of the absolute value of precipitable water. J. Applied Met. 35, pp. 830-838
  • [7] Halthore, R.N., Eck, T.F., Holben, B.N. & B.L. Markham (1997). Sunphotometric Measurements of Atmospheric Water Vapor Column Abundance in the 940-nm Band. J. Geophys. Res., 102, pp. 4343-4352
  • [8] Holben, B.N., T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak & A. Smirnov (1998). AERONET - A federated instrument network and data archive for aerosol characterization, Rem. Sens. Env., 66 (1), pp. 1-16
  • [9] Holben, B.N., Tanre, D., Smirnov, A., Eck, T.F., Slutsker, I., Abuhassan, N., Newcomb, W.W., Schafer, J., Chatenet, B., Lavenue, F., Kaufman, Y.J., Castle, J.V., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karnieli, A., O'Neill, N.T., Pietras, C., Pinker, R.T., Voss, K. & G. Zibordi (2001). An emerging ground-based aerosol climatology: Aerosol Optical Depth from AERONET, J. Geophys. Res., 106, pp. 12 067-12 097
  • [10] Hofmann-Wellenhof, B., H. Lichtenegger & E. Wasle (2008). GNSS – Global Navigation Satellite Systems GPS, GLONASS, Galileo, and more. Springer Wien New York
  • [11] Kruczyk, M. (2012). IGS Tropospheric Products - Quality Verification and Assessment of Usefulness in Climatology, International GNSS Service Workshop Symposium, 23-27 July 2012, Olsztyn, Poland, poster: P06-09
  • [12] Kruczyk, M. (2013). Opóźnienie troposferyczne GNSS i jego zastosowanie do badań stanu atmosfery. Wydawnictwo Politechniki Warszawskiej, seria Prace naukowe Geodezja i Kartografia, nr 54, Warszawa 2013
  • [14] Kruczyk, M. (2014). Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator, Reports on Geodesy and Geoinformatics, Vol. 99 (2015) ss. 1-18; DOI:10.2478/rgg-2015-0008
  • [14] Kruczyk, M. (2015). Comparison of Techniques for Integrated Precipitable Water Measurement in Polar Region, Geoinformation Issues Vol. 7, No 1(7)/ 2015 pp. 15-29
  • [15] Kruczyk, M. & Liwosz, T. (2012). Tropospheric Delay from EPN Reprocessing by WUT LAC as Valuable Data Source – in Comparison to Operational EPN Products and Aerological Data, Reports on Geodesy, No 1 (92)/2012, pp. 105-118.
  • [16] Kruczyk, M. & Liwosz, T. (2015). Integrated precipitable water vapour measurements at Polish Polar Station Hornsund from GPS observations verified by aerological techniques, Reports on Geodesy and Geoinformatics, Vol 98 (2015) 1-17; DOI: 10.2478/rgg-2015-0001
  • [17] Kruczyk, M., Liwosz, T. & Rogowski, J. (2011). IPW from various sources: GPS tropospheric solution, sunphotometer, radiosounding and numerical weather prediction model – conformity analysis. Geophysical Research Abstracts Vol. 13, EGU2011-12348, EGU General Assembly 2011
  • [18] Liwosz, T., Kruczyk M. & Rogowski J. (2010). WUT LAC Report. Paper presented at 7th EUREF LAC EUREF Analysis Workshop, Warsaw, November 18-19 2010 (http://www.epncb.oma.be/_newsmails/workshops/EPNLACWS_2010/day1/s2/8_wut_lac_report.pdf)
  • [19] Van Malderen, R., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., De Mazière, M., Wagner, T., De Backer, H. & Bruyninx, C. (2014). A multi-site techniques intercomparison of integrated water vapour observations for climate change analysis. Atmospheric Measurement Techniques Discussions, Volume 7, Issue 2, 2014, pp. 1075-1151
  • [20] McIlven, R. (2010). Fundamentals of Weather and Climate, Second Edition, Oxford University Press
  • [21] Munch, S.W. (2014). Atmospheric Water Vapour Sensing by Means of Differential Absorption Spectrometry Using Solar and Lunar Radiation, Geodätisch-geophysikalische Arbeiten in der Schweitz, Volume 92
  • [22] Pacione, R., Pace B., de Haan S.; Vedel H., Lanotte R. & Vespe F. (2011). Combination Methods of Tropospheric Time Series, Adv. Space Res., 47(2), pp.. 323-335, DOI: 10.1016/j.asr.2010.07.021
  • [23] Pérez-Ramírez, D., Whiteman, D.N., Smirnov, A., Lyamani, H., Holben, B., Pinker, R., Andrade, M. & Alados-Arboledas, L. (2014). Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS and radiosondes at ARM sites, J. Geophys. Res. - Atmos., 119, DOI:10.1002/ 2014JD021730
  • [24] Platt, U. (1994). Differential optical absorption spectroscopy (DOAS), Chem. Anal. Series, 127, pp. 27-83
  • [25] Querel, R. & Naylor D. (2011). Lunar absorption spectrophotometer for measuring atmospheric water vapour, Applied Optics Vol. 50, No. 4 pp. 447-453
  • [26] Rocken, C., Ware, R., Van Hove, T., Solheim, F., Alber, C., Johnson, J., Bevis, M. & Businger, S. (1993). Sensing atmospheric water vapor with the Global Positioning System. Geophys. Res. Lett., 20, 2631
  • [27] Saastamoinen, J. (1972). Atmospheric Correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy Geophysics Monograph Series, S. W. Henriksen et al., Ed., pp. 247-251
  • [28] Salby M.L., (2012). Physics of the Atmosphere and Climate, Cambridge University Press.
  • [29] Schmid, B. et al. (2001). Comparison of columnar water-vapour measurements from solar transmittance methods, Applied Optics Vol. 40, No. 12 pp. 1886-1896
  • [30] Shelton, M.L., (2009). Hydrometeorology. Perspectives and Applications, Cambridge University Press.
  • [31] Vedel, H., Mogensen, K.S. & X.-Y. Huang (2001). Calculation of zenith delays from meteorological data, comparison of NWP model, radiosonde and GPS delays, Phys. Chem. Earth, Vol. 26, No 6–8, pp. 497–502.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4ef1b32-0f94-4dd8-b8fc-7731a1ea4a1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.