PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Increase of the technogenic and ecological safety of the natural gas transportation due to displacement of explosive mixtures with nitrogen

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To ensure technological and environmental safety it is proposed to use the technology of purging pipeline with compressed nitrogen. Design/methodology/approach: The purpose of the calculation is: to get the graph of the concentration distribution (in volume fraction) of nitrogen and natural gas components depending on the distance from the injection point of nitrogen and the duration of the purge process, to determine of parameters of a non-stationary process, and to establish the optimal parameters of the purging process under conditions of the given flow chart. Findings: In the process of displacement of natural gas, the velocity of the front of nitrogen is one of the main quantities that significantly affect the quality of displacement. To assess the actual technological schemes for transporting natural gas, it is necessary to select the velocity of displacement of explosive mixtures. Research limitations/implications: This technology should be implemented in the conditions of a nitrogen pressure higher than 0.25 MPa. Practical implications: Most favourable conditions for the complete displacement of air and subsequent replacement of nitrogen with natural gas were observed for pressures higher from 1.0 to 1.5 MPa. Originality/value: Complex calculations of the volume of air displaced with nitrogen and natural gas in the process of filling the pipeline were conducted in the research. Boundary conditions on the concentration of the mixture of nitrogen and natural gas were identified.
Rocznik
Strony
17--27
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine
autor
  • Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine
Bibliografia
  • [1] B.Ye. Paton, Ye.I. Kryzhanivskyj, M.M. Savyczkyj, E.A. Shvydkyj, V.V. Zajcev, O.M. Mandryk, Transportuvannya stysnutogo pryrodnogo gazu ruxomym truboprovodom, Byul. #4 (2012) 2 (in Ukrainian).
  • [2] Ye.I. Kryzhanivskyi, V.V. Zaitsev, H.F. Romanovskyi, O.M. Karpash, M.I. Honcharuk, V.V. Zaitsev, Sposib transportuvannia stysnutoho pryrodnoho hazu, Patent na Korysnu Model N° 33882, 2008 (in Ukrainian).
  • [3] Ye.I. Kryzhanivskyi, Vykorystannia CNG tekhnolohii dlia postachannia hazu do Ukrainy, Naukovyi Visnyk Ivano-Frankivskoho Natsionalnoho Tekhnichnoho Universytetu Nafty i Hazu 2/32 (2012) 11-14 (in Ukrainian).
  • [4] Ye.I. Kryzhanovskiy, O.G. Dzeba, V.V. Zaytsev, V.V. Zaytsev, A.P. Dzhus, A.M. Susak, Current prerequisites and economic expediency of CNG- technologies implementation in Black sea, Shipbuilding and Marine Infrastructure Admiral Makarov National University of Shipbuilding 2 (2014) 81-92.
  • [5] T.K. Perkins, J.A. Euchner, Safe purging of natural gas pipelines, SPE Production Engineering 3/04 (1988) 663-668. DOI: https://doi.org/10.2118/16184- PA
  • [6] J.E. Johnson, S.J. Svedeman, C.A. Kuhl, J.G. Gregor, A.K. Lambeth, Pipeline purging principles and practice, Proceedings of the International Pipeline Conference, Vol. 40214, American Society of Mechanical Engineers, 1996, 765-775.
  • [7] M. Farzaneh-Gord, M.S. Pahlevan-Zadeh, A. Ebrahimi-Moghadam, S. Rastgar, Measurement of methane emission into environment during natural gas purging process, Environmental Pollution 242/B (2018) 2014-2026. DOI: https://doi.org/10.1016/benvpol.2018.07.027
  • [8] B.E. Mappus, A.G. Torstrick, Pipeline Hydrotesting, Dewatering, and Commissioning, Proceedings of the Offshore Technology Conference, 2007.
  • [9] H. Zhu, Q. Han, Numerical investigation of gas mixture length of nitrogen replacement in large-diameter natural gas pipeline without isolator, Journal of Applied Mathematics 2014 (2014) 542343. DOI: https://doi.org/10.1155/2014/542343
  • [10] K. Huang, Y. Xian, K. Shen, Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline, Applied Mechanics and Materials 321-324 (2013) 299-304. DOI: https://doi.org/10.4028/www.scientific.net/AMM.321- 324.299
  • [11] N. Kilinęer, F. Gumrah, A numerical simulation study on mixing of inert cushion gas with working gas in an underground gas storage reservoir, Energy Sources 22/10 (2000) 869-879. DOI: https://doi.org/10.1080/00908310051128219
  • [12] B.R. Misra, S.E. Foh, Y.A. Shikari, R.M. Berry, F. Labaune, The use of inert base gas in underground natural gas storage. Proceedings of the SPE Gas Technology Symposium, Dallas, Texas, 1988. DOI: https://doi.org/10.2118/17741-MS
  • [13] L. Poberezhny, A. Hrytsanchuk, I. Okipnyi, L. Poberezhna, A. Stanetsky, N. Fedchyshyn, Minimizing losses during natural gas transportation, Strojmcky Casopis - Journal of Mechanical Engineering 69/1 (2019) 97-108. DOI: https://doi.org/10.2478/scjme- 2019-0008
  • [14] N. Mohammed, A.J. Abbas, G.C. Enyi, D.E. Edem, S.M. Suleiman, Enhanced gas recovery by nitrogen injection: the effects of injection velocity during natural gas displacement in consolidated rocks, Journal of Natural Gas Science and Engineering 83 (2020) 103513. DOI: https://doi.org/10.1016/j .jngse.2020.103513
  • [15] R.M. Kondrat, L.I. Khaidarova, Enhanced gas recovery from depleted gas fields with residual natural gas displacement by nitrogen, Naukovyi Visnyk Natsio- nalnoho Hirnychoho Universytetu 5 (2017) 23-28.
  • [16] G. de Montricher, An equation of state for natural gas as a function of standard density, Proceedings of the PSlG Annual Meeting, Baltimore, Maryland, 1990, 18.
  • [17] J.L. Modisette, Equation of state tutorial, Proceedings of the PSIG Annual Meeting, Savannah, Georgia, 2000, 21.
  • [18] A.W. Etchells, C.F. Meyer, Mixing in pipelines, Handbook of Industrial Mixing, 391, 2004, 477.
  • [19] J. Li, M. Topphoff, K. Fischer, J. Gmehling, Prediction of gas solubilities in aqueous electrolyte systems using the predictive Soave-Redlich-Kwong model, Industrial and Engineering Chemistry Research 40/16 (2001) 3703-3710. DOI: https://doi.org/10.1021/ie0100535
  • [20] L.Y. Pobereznyi, L.Y. Poberezhna, P.O. Maruschak, S.V. Panin, Assessment of Potential Environmental Risks from Saline Soils Subsidence, IOP Conference Series: Earth and Environmental Science 50/1 (2017) 012046. DOI: https://doi.org/10.1088/1755-1315/50/1/012046
  • [21] P. Maruschak, L. Poberezny, O. Prentkovskis, R. Bishchak, A. Sorochak, D. Baran, Physical and mechanical aspects of corrosion damage of distribution gas pipelines after long-term operation, Journal of Failure Analysis and Prevention 18/3 (2018) 562-567. DOI: https://doi.org/10.1007/s11668-018-0439-z
  • [22] P. Maruschak, S. Panin, I. Danyliuk, L. Poberezhnyi, T. Pyrig, R. Bishchak, I. Vlasov, Structural and mechanical defects of materials of offshore and onshore main gas pipelines after long-term operation, Open Engineering 5 (2015) 365-372. DOI: https://doi.org/10.1515/eng-2015-0045
  • [23] W. Chen, F. King, T.R. Jack, M.J. Wilmott, Environ- mental aspects of near-neutral pH stress corrosion cracking of pipeline steel, Metallurgical and Materials Transactions A 33/5 (2002) 1429-1436. DOI: https://doi.org/10.1007/s11661-002-0066-9
  • [24] E.I. Kryzhanivs’kyi, R.S. Hrabovs’kyi, I.Y. Fedorovych, R.A. Barna, Evaluation of the Kinetics of Fracture of Elements of a Gas Pipeline after Operation, Materials Science 51/1 (2015) 7-14. DOI: https://doi.org/10.1007/s11003-015-9804-1
  • [25] Ya. Doroshenko, V. Zapukhliak, Ya. Grudz, L. Poberezhny, A. Hrytsanchuk, P. Popovych, O. Shevchuk, Numerical simulation of the stress state of an erosion-worn tee of the main gas pipeline, Archives of Materials Science and Engineering 101/2 (2020) 63-78. DOI: https://doi.org/10.5604/01.3001.0014.1192
  • [26] V. Zapukhliak, L. Poberezhny, P. Maruschak, V. Grudz, R. Stasiuk, J. Brezinova, A. Guzanova, Mathematical Modeling of Unsteady Gas Transmission System Operating Conditions under Insufficient Loading, Energies 12/7 (2019) 1325. DOI: https://doi.org/10.3390/en12071325
  • [27] Y. Doroshenko, J. Doroshenko, V. Zapukhliak, L. Poberezhny, P. Maruschak, Modeling computational fluid dynamics of multiphase flows in elbow and T-junction of the main gas pipeline, Transport 34/1 (2019) 19-29. DOI: https://doi.org/10.3846/transport.2019.7441
  • [28] V.Y. Chernov, V.D. Makarenko, E.I. Kryzhanivs'kyi, L.S. Shlapak, Causes and mechanisms of local corrosion in oil-field pipelines, Materials Science 38/5 (2002) 729-737. DOI: https://doi.org/10.1023/A: 1024274726352
  • [29] L. Poberezhny, P. Maruschak, A. Hrytsanchuk, L. Poberezhna, O. Prentkovskis, A. Stanetsky, Impact of gas hydrates and long-term operation on fatigue characteristics of pipeline steels, Procedia Engineering 187 (2017) 356-362. DOI: https://doi.org/10.1016/j.proeng.2017.04.386
  • [30] E.I. Kryzhanivs’kyi, R.S. Hrabovs’kyi, O.M. Mandryk, Estimation of the serviceability of oil and gas pipelines after long-term operation according to the parameters of their defectiveness, Materials Science 49/1 (2013) 117¬123. DOI: https://doi.org/10.1007/s11003-013-9590-6
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4ec23be-4b7c-4ccb-8197-9b6718c28721
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.