PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The Order on Projections in C*-Algebras of Real Rank Zero

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove a number of fundamental facts about the canonical order on projections in C*-algebras of real rank zero. Specifically, we show that this order is separative and that arbitrary countable collections have equivalent (in terms of their lower bounds) decreasing sequences. Under the further assumption that the order is countably downwards closed, we show how to characterize greatest lower bounds of finite collections of projections, and their existence, using the norm and spectrum of simple product expressions of the projections in question. We also characterize the points at which the canonical homomorphism to the Calkin algebra preserves least upper bounds of countable collections of projections, namely that this occurs precisely when the span of the corresponding subspaces is closed.
Słowa kluczowe
Rocznik
Strony
37--58
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Mathematical Logic Group Kobe University Kobe, Japan
Bibliografia
  • [1] W. Arveson, An Invitation to C*-Algebras, Grad. Texts in Math. 39, Springer, New York, 1976.
  • [2] T. Bice, Filters in C*-algebras, Canad. J. Math., to appear; arXiv:1109.6077.
  • [3] L. G. Brown, Interpolation by projections in C*-algebras of real rank zero, J. Operator Theory 26 (1991), 383–387.
  • [4] L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131–149.
  • [5] —, —, Interpolation by projections in C*-algebras, in: Operator Algebras, Abel Sympos. 1, Springer, Berlin, 2006, 1–13.
  • [6] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839–873.
  • [7] I. Farah and E. Wofsey, Set theory and operator algebras, in: Proc. Appalachian Set Theory, J. Cummings and E. Schimmerling (eds.), April 2008 (May 2010 Version), to appear; http://www.math.yorku.ca/~ifarah/preprints.html.
  • [8] G. Gong and H. Lin, Classification of homomorphisms from C(X) to simple C-*algebras of real rank zero, Acta Math. Sin. (Engl. Ser.) 16 (2000), 181–206.
  • [9] D. Hadwin, Maximal nests in the Calkin algebra, Proc. Amer. Math. Soc. 126 (1998), 1109–1113.
  • [10] P. R. Halmos, Commutativity and spectral properties of normal operators, Acta Sci. Math. (Szeged) 12 (1950), Pars B, 153–156.
  • [11] R. V. Kadison, Order properties of bounded self-adjoint operators, Proc. Amer. Math. Soc. 2 (1951), 505–510.
  • [12] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, London Math. Soc. Monogr. 14, Academic Press, London, 1979.
  • [13] S. Sherman, Order in operator algebras, Amer. J. Math. 73 (1951), 227–232.
  • [14] N. Weaver, Set theory and C*-algebras, Bull. Symbolic Logic 13 (2007), 1–20.
  • [15] J.Weidmann, Linear Operators in Hilbert Spaces, Grad. Texts inMath. 68, Springer, New York, 1980.
  • [16] B. Zamora-Avilés, The structure of order ideals and gaps in the Calkin algebra, PhD thesis, York Univ., 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4e9b48b-ee85-4053-bb00-c679b49d21b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.