PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania oporności elektrycznej zaprawy cementowej zbrojonej włóknami węglowymi spowodowanej długością spękań i odkształceń w trakcie pomiarów naprężeń rozciągających przy zginaniu trójpunktowym i przy rozłupywaniu

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Crack length and tensile strain correlation with electrical resistance of carbon fiber reinforced cement matrix composites measured by three-point bending test and splitting tensile test
Języki publikacji
PL EN
Abstrakty
PL
Rozwój samo-śledzących inteligentnych materiałów dla przemysłu budowlanego jest ważnym zadaniem, mającym na celu ich zabezpieczenie przed zniszczeniem i zapewnienie długiego okresu eksploatacji. W artykule zbadano korelację pomiędzy długością rysy a opornością elektryczną matrycy cementowej zbrojonej włóknami węglowymi stosując trzy-punktowe zginanie próbek i mierząc równocześnie wzrost długości rysy oraz oporność. Znaleziono po raz pierwszy bardzo dobrą korelację pomiędzy tymi zmiennymi dla zbrojonych włóknami węglowymi kompozytów cementowych. Bardzo dobra korelacja liniowa pomiędzy naprężeniem rozciągającym, badanym przy rozłupywaniu próbek, i opornością elektryczną takich samych kompozytów cementowych została także ustalona. Zmierzony bardzo duży wskaźnik określający zmianę oporności elektrycznej w stosunku do długości rysy wynoszący 1435 jest największym wskaźnikiem matrycy w kompozytach cementowych. Kompozyty cementowe opracowane w trakcie tych badań mogą być stosowane do wykrywania rys i odkształceń i ich śledzenia w konstrukcjach betonowych.
EN
Development of self-sensing smart materials for construction industry is an important task to protect the lives and to achieve optimal asset management strategies. In this study, five different carbon fibre reinforced cement matrix composites were designed with carbon fibres having length of 3 mm. In order to investigate the relation between the crack length and electrical resistance change notched three-point bending test was applied to the rectangular prism samples. During the bending test, crack length and electrical resistance were simultaneously recorded. A strong linear relationship was found between the crack length and electrical resistance change. Correlations between the crack length and electrical resistance change were determined for the first time in the literature for carbon fiber reinforced cement composites. Tensile strain and electrical resistance were simultaneously measured during the split tensile tests and a strong linear correlation between the tensile strain and electrical resistance change was determined. The maximum gage factor was obtained at the percolation threshold value due to the shift in the conduction system from post-percolation to pre-percolation by strain. Gage factors as high as 1435 were measured which is the highest gage factor reported for cement matrix composites. The cement composites designed in this study can be used for crack detection and strain sensing in health monitoring of concrete structures.
Czasopismo
Rocznik
Strony
1--17
Opis fizyczny
Bibliogr. 52 poz., il., tab.
Twórcy
autor
  • Dokuz Eylul University, Civil Engineering Department, Kaynaklar, Buca, Izmir, Turkey
Bibliografia
  • 1. F. Reza, G. B. Batson, J. A. Yamamuro, J. S. Lee, Resistance changes during compression of carbon fiber cement composites, J. Mater. Civil Eng., 15, 476-483 (2003).
  • 2. D. D. L. Chung, Review functional properties of cement –matrix composites, J. Mater. Sci., 36, 1315-1324 (2001).
  • 3. D. D. L. Chung, Self-monitoring structural materials, Mater. Sci. Eng., 22, 2, 57-78 (1998).
  • 4. X. Fu, E. Ma, D. D. L Chung, W. A. Anderson, Self-monitoring in carbon fiber reinforced mortar by reactance measurement, Cem. Concr. Res., 27, 6, 845-852 (1997).
  • 5. X. Fu, D. D. L. Chung, Effect of curing age on the self-monitoring behavior of carbon fiber reinforced mortar, Cem. Concr. Res., 27, 9, 1313-1318 (1997).
  • 6. E. Teomete, T. K. Erdem, Cement Based Strain Sensor: A Step to Smart Concrete, Cement Wapno Beton, 77, 2, 78-91 (2011).
  • 7. M. Chiarello, R. Zinno, Electrical conductivity of self-monitoring CFRC, Cem. Concr. Comp., 27, 463-469 (2005).
  • 8. B. Han, X. Guan, J. Ou, Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors, Sens. and Actuators A, 135, 360-369 (2007).
  • 9. F. Reza, J. A. Yamamuro, G. B. Batson, Electrical resistance change in compact tension specimens of carbon fiber cement composites, Cem. Concr. Comp., 26, 873-881 (2004).
  • 10. B. Chen, J Liu, Damage in carbon fiber –reinforced concrete, monitored by both electrical resistance measurement and acoustic emission analysis. Constr. Build. Mater., 22, 2196-2201 (2008).
  • 11. H. Li, H. Xiao, J. Ou, Effect of compressive strain on electrical resistivity of carbon black-filled cement –based composites. Cem. Concr. Comp., 28, 824-828 (2006).
  • 12. H. Li, H. Xiao, J. Ou, Electrical property of cement-based composites filled with carbon black under long-term wet and loading condition, Comp. Sci. and Tech., 68, 2114-2119 (2008).
  • 13. D. D. L. Chung, Cement reinforced with short carbon fibers: a multifunctional material, Comp. Part B: Engineering, 31, 511-526 (2000).
  • 14. B. Han, K. Zhang, X. Yu, E. Kwon, J. Ou, Nickel paticle based self-sensing pavement for vehicle detection, Measurement, 44, 1645- 1650 (2011).
  • 15. J. Xu, W. Yao, R. Wang, Nonlinear conduction in carbon fiber reinforced cement mortar, Cem. Concr. Comp., 33, 444-448 (2011).
  • 16. H. Gong, Y. Zhang, J. Quan, C. Songwei, Preparation and properties of cement based piezoelectric composites modified by CNTs. Current Applied Physics, 11 653-656 (2011).
  • 17. R. Rianyoi, R. Potong, N. Jaitonong, R. Yimnirun, A. Chaipanich, Dielectric, ferroelectric and piezo electric properties of 0-3 barium titanate - Portland cement composite, Applied Physics A, 104, 661- 666 (2011).
  • 18. S. Vaidya, E. N. Allouche, Strain sensing of carbon fiber reinforced geopolymer concrete, Mater. and Struct., 44, 1467–1475 (2011).
  • 19. Z. J. Li, D. Zhang, K. R. Wu, Cement matrix 2-2 piezoelectric composite Part 1. Sensory effect, Mater. and Struct., 34, 506-512 (2001).
  • 20. J. M. Torrents, T. O. Mason, A. Peled, S. P. Shah, E. J. Garboczi, Analysis of the impedance spectra of short conductive fiber-reinforced composites, J. of Materials Science, 36, 4003-4012 (2001).
  • 21. A. D. Hixson, L. Y. Woo, M. A. Campo, T. O. Mason, E. J. Garboczi, Intrinsic conductivity of short conductive fibers in composites by impedance spectroscopy, J. of Electroceramics, 7, 189–195 (2001).
  • 22. A. Peled, J. M. Torrents, T. O. Mason, S. P. Shah, E. J. Garboczi, Electrical impedance spectra to monitor damage during tensile loading of cement composites, ACI Materials Journal, 98, 4, 313-322 (2001).
  • 23. J. M. Torrents, T. C. Easley, K. T. Faber, T. O. Mason, Evolution of impedance spectra during debonding and pullout of single steel fibers from cement, J. Am. Ceram. Soc., 84, 4, 740–746 (2001).
  • 24. T. O. Mason, M. A. Campo, A. D. Hixson, L. Y. Woo, Impedance spectroscopy of fiber-reinforced cement composites, Cem. Concr. Comp., 24, 457–465 (2002).
  • 25. L. Y. Woo, N. J. Kidner, S. Wansom, T. O. Mason, Combined time domain reflectometry and AC-impedance spectroscopy of fiber-reinforced fresh-cement composites, Cem. Concr. Res., 37, 89–95 (2007).
  • 26. J. D. Shane, T. O. Mason, H. M. Jennings, Effect of the interfacial transition zone on the conductivity of portland cement mortars, J. Am. Ceram. Soc., 83, 5, 1137–44 (2000).
  • 27. F. Rajabipour, J. Weiss, J. D. Shane, T. O. Mason, P. S. Surendra, Procedure to interpret electrical conductivity measurements in cover concrete during rewetting, J. of Mat. in Civil Engineering, 17, 5, 586-594 (2005).
  • 28. P. J. Tumidajski, P. Xie, M. Arnott, J. J. Beaudoin, Overlay current in a conductive concrete snow melting system, Cem. Concr. Res., 33, 1807–1809 (2003).
  • 29. B. Han, K. Zhang, X. Yu, E. Kwon, J. Ou, Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites, Cem. Concr. Comp., 34, 6, 794-800 (2012).
  • 30. B. Han, X. Yu, E. Kwon, J. Ou, Effects of CNT concentration level and water/cement ratio on the piezoresistivity of CNT/cement composites, J. of Comp. Mater., 46, 1, 19-25 (2012).
  • 31. B. Han, J. Ou, Embedded piezoresistive cement-based stress/strain sensor, Sens. Actuators A- Phys., 138, 2, 294-298 (2007).
  • 32. B. G. Han, Y. Yu, B. Z. Han, J. P. Ou, Development of a wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement-based sensors, Sens. Actuators A- Phys., 147, 2, 536-543 (2008).
  • 33. B.G. Han, B.Z. Han, J.P. Ou, Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity, Sens. Actuators A- Phys., 149, 1, 51-55 (2009).
  • 34. H. Xiao, H. Li, J. Ou, Modeling of piezoresistivity of carbon black filled cement-based composites under multi-axial strain, Sens. Actuators A- Phys., 160, 1-2, 87-93 (2010.)
  • 35. J. L. Le, H. Du, S. D. Pang, Use of 2D Graphene Nanoplatelets (GNP) in cement composites for structural health evaluation, Composites: Part B, 67, 555-563 (2014).
  • 36. E. Teomete, O. I. Kocyigit, Tensile strain sensitivity of steel fiber reinforced cement matrix composites tested by split tensile test, Constr. Build. Mat., 47, 962-968 (2013).
  • 37. E. Teomete, Transverse strain sensitivity of steel fiber reinforced cement composite tested by compression and split tensile tests, Constr. Build. Mat., 55, 136-145 (2014).
  • 38. E. Teomete, Relations of crack length and electrical resistance for smart cement based composites, Cement Wapno Beton, 80, 6, 329-334 (2013).
  • 39. E. Teomete, O. I. Kocyigit, Correlation between compressive strain and electrical resistance in carbon fiber reinforced cement composites, Cement Wapno Beton, 82, 1, 1-10 (2015).
  • 40. D. D. L. Chung, Multifunctional cement-based materials, M. Dekker, New York 2003.
  • 41. B. Han, X. Yu, J. Ou, Self-Sensing Concrete in Smart Structures. Butterworth-Heinemann, Boston 2014.
  • 42. H. Xiao, H. Li, J.P. Ou, Strain sensing properties of cement-based sensors embedded at various stress zones in a bending concrete beam. Sensors and Actuators A Physical, 167, 2, 581-587 (2011).
  • 43. B. G. Han, Y. Yu, B. Z. Han, J. P. Ou, Development of a wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement-based sensors, Sensors and Actuators A- Physical, 147, 2, 536-543 (2008).
  • 44. B. Han, J. Ou, Embedded piezoresistive cement-based stress/strain sensor, Sensors and Actuators A-Physical 138, 2, 294-298 (2007).
  • 45. B. Han, X. Guan, J. Ou, Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors, Sensors and Actuators A-Physical, 135, 2, 360-369 (2007).
  • 46. B. Han, K. Zhang, T. Burnham, E. Kwon, X. Yu, Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection, Smart Materials and Structures, 22, 1, 1-8 (2013).
  • 47. W. J. McCarter, H.M. Taha, B. Suryanto, G. Starrs, Two-point concrete resistivity measurements: interfacial phenomena at the electrode-concrete contact zone, Meas. Sci. And Tech., 26, 8, 085007 1-13 (2015).
  • 48. T. V. Fursa, K. Y. Osipov, B. A. Lukshin, G. E. Utsyn, The development of a method for crack-depth estimation in concrete by the electric response parameters to pulse mechanical excitation, Meas. Sci. and Tech., 25 (5), 055605 1-10 (2014).
  • 49. E. Teomete, Measurement of crack length sensitivity and strain gage factor of carbon fiber reinforced cement matrix composites, Measurement, 74, 21-30 (2015).
  • 50. E. Teomete, O. I. Kocyigit, Electrical resistance - compressive strain relationship of steel fiber reinforced cement composites, Cement Wapno Beton, 82, 4, 244-253 (2015).
  • 51. E. Teomete, The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite, Smart Mater. Struct., 25, 075024 (2016).
  • 52. European Committee for Standardization, EN 12390-6: Testing hardened concrete - Part 6: Tensile splitting strength of test specimens (2009).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4e97619-0260-4b63-8a42-8494fd907ba7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.