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Estimation of system reliability by using the PLS-regression based 
corrected response surface method

Ocena niezawodności systemu z wykorzystaniem poprawionej 
metody powierzchni odpowiedzi opartej 

na regresji cząstkowych najmniejszych kwadratów
A new computational method, referred as PLS-regression (PLSR) based corrected response surface method, has been developed 
for predicting the reliability of structural and mechanical systems subjecting to random loads, material properties, and geometry. 
The method involves a Corrected-Response Surface Model (C-RSM) based on the Partial Least Squares Regression Method 
(PLSRM) combined with some correction factors, and Monte Carlo Simulation (MCS), which is named as the Corrected-Partial 
Least Squares Regression-Response Surface Method (C-PLSRRSM). In order to develop an accurate surrogate model for the 
region determining the reliability of the system, a proper coefficient is presented to determine the sampling region of the input 
random variables. Due to a small number of original function evaluations, the proposed method is effective, particularly when 
a response evaluation entails costly finite-element, mesh-free, or other numerical analysis. Three numerical examples involving 
reliability problems of two structural systems and a mechanical system illustrate the method developed. Results indicate that the 
proposed method provides accurate and computationally efficient estimates of reliability. The proposed correction method, the 
PLSR based corrected response surface (C-PLSR-RS), can be the accurate surrogate model for calculating system reliabilities, 
especially for the implicit performance functions.

Keywords:	 Reliability; Mechanical System; Partial Least Squares Regression; Response Surface Method; Cor-
rection Method.

Nowa metoda obliczeniowa o nazwie "poprawiona metoda powierzchni odpowiedzi oparta na regresji PLS" (C-PLSRRSM) zosta-
ła opracowana dla potrzeb przewidywania niezawodności systemów konstrukcyjnych i mechanicznych poddanych obciążeniom 
losowym oraz charakteryzujących się losową geometrią oraz losowymi właściwościami materiałowymi. W metodzie uwzględniono 
pewne czynniki korekcyjne oraz symulację Monte Carlo. W celu opracowania odpowiedniego modelu zastępczego dla regionu sta-
nowiącego o niezawodności systemu, przedstawiono współczynnik, który pozwala określić obszar pobierania próbek wejściowych 
zmiennych losowych. Ze względu na niewielką liczbę ocen funkcji początkowych, proponowana metoda jest skuteczna zwłaszcza 
wtedy, gdy ocena odpowiedzi wymaga kosztownej analizy numerycznej metodą elementów skończonych czy metodą automatycz-
nie generowanej siatki (free mesh). Opracowaną metodę zilustrowano za pomocą trzech przykładów numerycznych dotyczących 
niezawodności dwóch systemów konstrukcyjnych oraz jednego układu mechanicznego. Wyniki wskazują, że proponowana metoda 
zapewnia dokładne i wydajne obliczeniowo oszacowanie niezawodności. Proponowana metoda C-PLSR-RS może stanowić trafny 
model zastępczy do obliczania niezawodności systemu, zwłaszcza w przypadku uwikłanych funkcji stanu granicznego.

Słowa kluczowe:	 niezawodność; układ mechaniczny; regresja cząstkowych najmniejszych kwadratów; metoda 
powierzchni odpowiedzi; metoda korekcji.

1. Introduction

Suppose a system has m limit-state functions associated with its 
constituting components. If the relationship between the system reli-
ability and component reliability is known, it is possible to compute 
the system reliability pRs through the component reliability jpR  . For 
a series system, the system works well only if all components oper-
ate well, then system reliability is the probability of intersection of 
the component reliability events [21,29], as shown in Eq. (1). For a 
parallel system, the system is reliable if any of the components works 
well, then system reliability pRs  is, therefore, computed by the prob-
ability of the union of the component reliability events [29], as shown 
in Eq. (2).

	
j 1

Pr 0
m

jpRs Y
=

  = > 
  


(for a series system),	 (1)

and 

	
1

Pr 0
m

j
j

pRs Y
=

  = > 
  


(for a parallel system).	 (2)

Where jY
 
is the thj  component limit-sate function included in the 

system performance function, which is expressed by:

	 ( ) ( ), 1, ,j jY g j m= =X 
,	 (3)
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and the size of the random variables [ ]1 2, , , T
nX X XX = 

 is n. Then 

the component reliability event jE  is defined by the event ( ) 0jg >X
, and the component reliability is then the probability:

	 ( ){ }( )Pr 0 , 1, ,j jpR g j m= > =X  .	 (4)

The major task of system reliability analysis is to calculate pRs , 
given the joint distribution of X  and the limit state functions 

( ) ( ), 1, ,jg j m=X 
. So far, one of the system reliability analysis 

method uses the component reliability without considering the de-
pendency between the components failure. Approximate methods, 
such as the first- and second-order reliability methods (FORM/
SORM) [4, 15, 28] and simulation methods [1, 23, 25, 26], are com-
monly employed to estimate the component reliability. Considering 
the failure dependency expressed by the linear correlation coefficient

ρij  , which is the failure relationship between the thi  component and 

the thj  component, another system reliability calculation method is 

obtained. The linear correlation coefficient ρij  can be easily found 

with the linearized limit-state function ( )ig X  and ( )jg X . Details 

about this type of system reliability analysis can be referred in [6, 21, 
33, 38].

Without considering the correlation between the components 
failure, or using the linear correlation coefficient to express the de-
pendency relationship, the accuracy of the component (or system) re-
liability result will deteriorate with the increase of the nonlinearity in 
nonnormal-to-normal transformation. To solve these problems, sev-
eral more accurate methods have been developed by investigators [3, 
7, 9]. Through extending the saddlepoint approximation (SA) method 
[8, 16] used in component reliability analysis, Du [7] developed a SA 
based system reliability analysis method. However, the accuracy of 
the results is largely determined by the accuracy of linearization of 
limit-state functions in the vicinity of their associated Most Likeli-
hood Points (MLPs) and the MLPs are acquired by the optimization 
iteration process which affects the efficiency of the reliability calcula-
tion. Efficient Global Reliability Analysis (EGRA) method [2] was 
extended to solve the system reliability problems by Barron [3]. It 
is based on the creation of Gaussian process surrogate models that 
are required to be locally accurate only in the regions which have 
the significant contributions to the system failure. However, a large 
number of iterations and a complex optimization process are needed 
to get the surrogate model, which will decrease the efficiency of the 
system reliability analysis. An active learning reliability method com-
bining Kriging and MCS was presented by Echard [9]. Two kinds of 
active learning method, which are used to add the experiment points 
to mend the meta-model, are presented. However, every point of the 
sample population obtained from the Monte Carlo Sampling is needed 
to search once during each active learning process, and high compu-
tational cost occurs if the number of the sample point population is 
large. A fuzzy multi-objective genetic algorithm approach [24] was 
proposed to optimize the system reliability. 

This paper presents a new computational method for predicting 
reliability of structural and mechanical systems subjecting to random 
loads, material properties, and geometry. The proposed method in-
volves a small number of exact or numerical evaluations of the per-
formance function, generation of approximate values of the perform-
ance function at arbitrarily large number of inputs using the C-RSM, 
and the reliability evaluation by using the MCS. Three numerical 
examples involving reliability problems of structural and mechanical 

system illustrate the effectiveness and accuracy of the proposed meth-
od. Whenever possible, to evaluate the accuracy and computational 
efficiency of the proposed method, comparisons have been made with 
direct MCS method which calculates the original performance func-
tions to get the system reliability.

Section 2 provides a brief introduction to the partial least squares 
regression and response surface method. Section 3 describes the pro-
posed corrected response surface method based on PLSR method, 
which involves a new correction method with a coefficient, and a new 
sample method with a proposed proper coefficient to bound the distri-
bution region of the input random variables. Section 4 gives the simu-
lation theory of the MCS method which is used to analysis the system 
reliability with complex component failure dependencies. Three nu-
merical examples are illustrated in Section 5, and comparisons have 
been made with direct MCS method.

2. Partial least square regression method and response 
surface method 

Partial least square regression (PLSR) has two algorithms, PLS1 
(Sequential algorithm) for the univariate response variables and PLS2 
for the multivariate response variables [20]. PLSR was used to simul-
taneously correlate the parameters and responses. PLSR is a method 
for relating two data matrices, x  and y  (in this paper, representing 
a pair of realization matrix of X  and Y at the sampling data), by a 
linear multivariate model, but goes beyond traditional regression in 
that it models also the structure of x  and y . The core concept of 
the PLSR approach is to solve the multicollinearity in regression or 
calibration, and the further details of the PLSR can be found in Ref. 
[35]. Nowadays, the PLSR method is applied to analysis the compo-
nent reliability [39, 40]. PLSR derives its usefulness from its abil-
ity to analyze data with many, noisy, collinear, and even incomplete 
variables in both x  and y . Unlike the traditional Multiple Linear 
Regression (MLR) method, PLSR actually uses the responses vari-
able information during the decomposition process [13]; even the x
-variables data tend to be many and also strongly correlated, PLSR 
method also works well. Many studies have shown the potential of 
PLSR for estimating the parameters and demonstrated that PLSR was 
a better alternative to conventional stepwise regression [18, 30, 32]. 
PLSR is also known as the projection to the latent structures which 
are included in a relatively recent multivariate regression method that 
combines the aspect of the principal component regression(PCR) and 
multiple linear regression (MLR). PLSR is pertinent statistical choice 
when [a] there are many variables x that are correlated with many 
responses y and [b] there is missing data on experimental work [5]. In 
this paper, PLSR method will be used to produce the surrogate model 
of the original performance functions of a system. The meta-model, 
with simple and low nonlinear form, will be used to calculate the sys-
tem reliability. 

Response surface method is used to explore interaction among 
the parameters and predict properties on the experimental region [5]. 
RSM is also a effective tool in assessing the reliability of complex 
structures which requires a deal between reliability algorithms and 
mechanical methods used to model the mechanical behavior, and 
the interest of this method is that the user is allocated to choose and 
check the mechanical experiments [12, 31]. RSM was used to explore 
interactions among parameters and predict the failure regions. RSM 
methodology is a collection of mathematical and statistical techniques 
based on fitting of polynomial equation to the experimental data, and 
becomes a powerful tool for describing the studied system ,so predic-
tion of its behavior can be made by the surface responses plots that 
represents the system under studied region [5, 27]. RSM was also used 
for analyzing the surface maps for different responses and detecting 
of interactions among variables and quadratic models presented on 
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the responses [14]. The procedure of using a least square regression 
analysis to obtain the parameters of a response surface around a de-
sign point has earlier been used by Faravelli  [10]. RSM method is 
used for the several reasons but the important one is that the numerical 
derivation on the analytical response surface is available, which re-
duces the number of mechanical computations required and provides 
the information to decision maker to choose the judicious experiment 
chemometric tools like Design of Experiment (DOE), RSM, PCR, or 
PLSR [12]. These methodologies can be helpful when many variables 
and responses are presented in various processes and correlation.

3. Corrected response surface based on PLSR

3.1.	 A simple PLSR algorithm

PLSR has the ability to model one or several dependent variables, 

responses, [ ]1 2 , , T

mY Y Y，Y = , by means of a set of predictor varia-

bles [ ]1 2, , , T
nX X XX = 

. With multivariate PLSR and the observa-

tion data, linear combinations of the predictor variables are formed 
sequentially and related to Y  by ordinary least squares regression. It 
is shown that these linear combination, here called latent variables 
(also called components and factors similar to the components using 
in the principal components regression), is viewed as weighted aver-
ages of predictors, where each predictor holds the residual informa-
tion that is not contained in the earlier latent variables. And the quan-
tity to be predicted is a weighted average of the residuals from 

separately regressing each jY  response against earlier latent varia-
bles. A modeling problem including m-dependent variables, responses 

1 2, , mY , Y Y , and n-independent variables, predictor variables (or in-

put variables) 1 2, , , nX X X are considered here to explain the PLSR 

theory. Where 1 2, , mY , Y Y are seen as n responses all affected by in-

put variables (independent with each other) 1 2, , , nX X X . By se-

lecting N observations (sample points) composed of N input data vec-

tors ( )1 2, , , , 1,2, ,T
k k k knx x x k N= = x  and the corresponding N 

responses values vectors ( )1 2, , , y , 1,2, ,T
k k k km= y y k N= y  ob-

tained from calculating the original performance functions, two matri-
ces x  and y  of dimensions ( *N n ) and ( *N m ) are formed. Data of 
a PLSR method can be arranged in two tables, and usually have been 
centered and scaled before the analysis [11], which are expressed by 
Eq. (5) and Eq. (6), respectively:

	
11 1

0

1

E
n

N Nn

x x

x x

 
 =  
  



  



,	 (5)

	
11 1

0

1

F
m

N Nm

y y

y y

 
 =  
  


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

,	 (6)

Here, a simple PLSR algorithm used in this paper is described as 
below:

Finding the eigenvector corresponding to the maximum eigen-(1)	

value of matrix 0 0 0 0
T TE F F E  as 1w ; calculating the latent 

variable as 1 1wTt = X ; evaluating the score vector as 1 0 1=t E w

and the residual matrix as E E t1 0 1 1= − αT . Where 

α1 0 1 1
2

= ET t t  .

Finding the eigenvector corresponding to the maximum eigen-(2)	

value of the matrix 1 0 0 1
T TE F F E  as 2w ; calculating the latent 

variable as 2 2wTt = X ; evaluating the score vector as 



2 1 2=t E w  and the residual matrix as E E t2 1 2 2= − αT . Where 

α2 1 2 2
2

= ET t t  .

The same processes carried out repeatedly until the (3)	 thp  step. 

Then pw  equals to the eigenvector corresponding to the max-

imum eigenvalue of the matrix 1 0 0 1
T T

p p− −E F F E . The latent 

variable is given by wT
p pt = X  and the score vector is esti-

mated by  1p p p−=t E w . 

According to the(4)	  p latent variables extracted by above steps, 

the regression model of 0F  is represented as  
F t t0 1 1= + + +



β βT
p p

T
pF . Substituting  

* *
1 1 ,( 1,2, , )h h hn nt w X w X h p= + + =   to the regression 

equations vector Y = t t1 1β β+ + p p , we can get m response 

surrogate functions: 1 1 ,( 1,2, , )j j jn nY a X a X j m= + + =  . 

Where two requirements should be fulfilled:  *
0h h=t E w  and 

w I w wh i i
T

i

h
h

* = −( )
=

−

∏ αα
1

1
.

3.2.	 Cross-validation theory

A strict test of the predictive significance of each PLS latent vari-
able is necessary, and then stopping when latent variables start to be 
non-significant. Cross-validation (CV) is a practical and reliable way 
to test this predictive significance [11, 35, 36]. Cross-validation meth-
od is used to determine whether the next latent variable is needed to be 
extracted. Assuming the current latent variable is ht . Then the theory 
of this method, including two predictive residual sums of squares 
(PRESS), is analyzed as follows:

First type-PRESS(1)	
The N sample points are divided into two groups each time, includ-

ing one with N-1 sample points and the other with one sample point. 
N parallel regression model is developed from the reduced data with 
one row of the observation data deleted. After developing a model, 
differences between actual and predicted Y -values are calculated for 
the deleted data. The sum of squares of these differences is computed 
and collected from all parallel models to form the predictive residual 
sum of squares (PRESS), which estimates the predictive ability of the 

model. The PRESS of the thj  response is expressed as:

	 ( ) ( )
 ( )( ) ( )

2

1
, 1,2, ,

N
j ij i j

i
PRESS h y y h j m

=
= − =∑ 

	 (7)
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The PRESS of ( )1 2, , , T
mY Y YY =   can be defined as:

	 ( ) ( )
1

m
j

j
PRESS h PRESS h

=
= ∑ ,	 (8)

Second type-SS(2)	
All sample points are used to regress the response functions, and 

the difference between the actual and predicted Y -values for each 

point are calculated. The PRESS of jY  corresponding to all the sam-
ple points is presented as:

	
( ) ( )

 ( )( )
2

1

N
j ij i j

i
SS h y y h

=
= −∑ ,	 (9)

Then the PRESS of ( )1 2, , , T
mY Y YY = 

can be defined as:

	
( ) ( )

1

m
j

j
SS h SS h

=
= ∑ ,	 (10)

Stopping condition(3)	
An error threshold of the stopping condition is defined by:

	 ( ) ( )/ 1threC PRESS h SS h= − .	 (11)

Where ( )1SS h −  denotes the residual sum of squares before the cur-
rent latent variable. 

The ratio is calculated after each latent variable, and a latent 
variable is judged significantly from the ratio which is smaller than 

around 0.9025 for at least one of the Y -variables. If threC  is less than 
0.9025, then the h  latent variables are enough to provide an accurate 
regression model; otherwise, another latent variable is needed to be 
extracted in order to reach the accurate level. The process continues 
until a latent variable is not significant.

3.3. Design of experiment

Direct sampling methods (MCS for example) for reliability analy-
sis by evaluating a large number of original response functions with 
high complexity and nonlinearity can be prohibitively expensive. 
Various importance sampling methods have been developed to reduce 
expense by focusing on samples in the important regions of the ran-
dom variable space [19, 34, 41]. Another method of reducing cost is 
the use of surrogate models. Typically, a relatively small set of points 
are selected through DOE method and the true response is calculated 
at each sample point. These points are then used to construct an ap-
proximation with simple and low nonlinear form of the true response 
using some regression methods (PLSR is used in this paper).

In order to develop the response surface surrogate model, Latin 
hypercube sampling (LHS) [22] is used to generate a group of sample 
observations in this paper. By considering the sample number used 
in dimensional reduction method (DRM) [37] through selecting the 
same number of sample points along every axis and several experi-
ments, the proper number of samples used to construct the surrogate 
model is 4 nN = × . Where n  is the number of the random variables 

affecting all of the responses which determine the performance of the 
mechanical system. Assuming the mean value vector of the random 
variables is:

	 µµX =   = [ ]µ µ µ µ µ µX X X
T T

1 2 1 2, , , , , , 

n n ,	 (12)

and the deviation vector of the random variables is:

	
σσX =   = [ ]σ σ σ σ σ σX X X

T T
1 2 1 2, , , , , , 

n n ,	 (13)

Then the sampling space used in LHS method can be given by:

	
S X X X X= f +fµµ σσ µµ σσ−[ ], ,	 (14)

The proper one, f=4.5, is chosen by constructing many experi-
ments with ranging from 3 to 6. With the selected coefficient to 
bounding the sampling space, a more accurate reliability probability 
value will be obtained.

3.4.	 Response surface based on PLSR

With the N  sample points, the corresponding N  response func-

tion values of each jY , which are obtained from the structural analysis 

method (FEM for example), are computed by:

	 ( )y ,( 1,2, , 1,2, , )jk jk kg j = m;k N= = x ,	 (15)

Then the two data matrices, x  and y , are enough to develop the sur-
rogate models.

RSM consisting of a group of mathematical and statistical tech-
niques, is used in the development of an adequate functional relation-
ship between a response of interest and a number of associated input 
variables. Without containing the cross-product powers of

1 2, , , nX X X , the second-degree RSM model of the thj  component 

performance function is shown by:

	 2
0

1 1
,( 1,2, , )

n n
RS
j j ji i jii i

i i
Y a a X a X j m

= =
= + + =∑ ∑  ,	 (16)

Then nonlinearity of the original performance function can be ex-

plained. Substituting the 2
iX  with iZ , the RSM model is then de-

fined as:

	
0

1 1
,( 1,2, , )

n n
RS
j j ji i jii i

i i
Y a a X a Z j m

= =
= + + =∑ ∑  ,	 (17)

Therefore, combined with the two matrices consisting of the input 

variables sample data, 2; ; 
 x xI

 
( in dimensions ( )2 1N n× + ) and 

the corresponding response data, [ ]y  
(in dimensions N m× ), the pa-

rameters of the model shown in Eq. (16-17) can be calculated accu-
rately by the PLSR method. Where I  is a 1N × matrix filled with 1.
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3.5.	 Corrected RSM based on PLSR

Here, as only second powers of the input variables are considered 
and the cross-products of powers of the input variables are neglected, 
errors may be produced by the surrogate model. Therefore, some 
methods are needed to improve the accuracy of the surrogate model. 
In the field of reliability analysis, almost all types of the random vari-
ables have the following characteristics as most of the data is distrib-
uted around the mean value and the more the data close to the mean 
value, so the larger probability data will be selected. The two charac-
teristics show that the data around the mean value of the input vari-
ables has the larger impact on the reliability result of the component 
or system. Then if the surrogate model is accurate at the mean value 
of the input variables, the reliability result will be accurate. Based on 
this thought, if the surrogate model is improved at the mean value of 
the input random variables, the accuracy of the reliability result calcu-
lated by surrogate model will be improved. In the light of this, a new 
correction method is proposed. The performance functions values at 
the mean value of the input random variables are firstly calculated for 
both of the original response functions and the surrogate functions. 
The difference between two types of response values are then calcu-
lated and used as the correction coefficient to modify the meta-model. 
The procedures for this method are list as follows:

Calculate “mean” response function values(1)	
The value of the component response function is evaluated as:

	 y g j mj
mean

j
A_ , , ,= ( ) =( )µµX 1 ,	 (18)

and the corresponding value obtained by surrogate model is estimated 
as:

	 y a a aj
R mean

j ji i
i

n
jii i

i

n
_ ,( , , , )= + + =

= =
∑ ∑0

1

2

1
1 2µ µ j m ,       (19)

Calculate the coefficients(2)	
The coefficients are then represented by:

	 ( )_ _ , 1,2, ,A mean R mean
j j jcf y y j m= − =  ,	 (20)

Where jcf  represents the correction quantity of the surrogate model 

of the thj  component limit state function corresponding to the origi-

nal exact one at the mean value of the random variables. _A mean
jy  

represents the component response value calculated by the original 

limit state function, and _R mean
jy  represents the value calculated by 

the surrogate model.
Correct RSM(3)	

With the coefficient jcf , the surrogate model can be revised in 
the form of:

	 2
0

1 1
,( 1,2, , )

n n
corr
j j ji i jii i j

i i
Y a a X a X cf j m

= =
= + + + =∑ ∑  .   (21)

Based on the corrected method, an accurate surrogate model will 
be obtained and the system reliability can be calculated more accu-
rately. Combined with the MCS, the model will be used to simulate 
the system reliability.

4. MCS used in the reliability analysis of a dependent 
system

Assuming 0jY >
 
represents that the component is working well. 

For a series system, reliability of the system indicates that all compo-
nents of the system work well. When using the component perform-
ance functions to express the system reliability, the performance func-
tion of the system can be defined as:

	 [ ]1 2min , , ,series mG Y Y Y=  ,	 (22)

and the system reliability is defined as:

	 { }Pr 0seriespRs G= > ,	 (23)

For a parallel system, the system is reliable if any of the compo-
nents works well. Then the performance function of the system can 
be computed by:

	 [ ]1 2max , , ,parrallel mG Y Y Y= 
,	 (24)

and reliability of the parallel system is evaluated by:

	 { }Pr 0parrallelpRs G= > ,	 (25)

Where all of the component functions 1 2, , , mY Y Y  are affected by the 

same input variables 1 2, , , nX X X  , which indicates the dependency 
of the system failure.

Then Monte Carlo method estimating ,R SP and ,R pP  of the re-
liabilities of the series system and parallel system, respectively, are 
expressed as:

	 ,
1

1 0
SN

k
R S series

S k
P G

N =

 = > ∑  ,	 (26)

	 ,
1

1 0
SN

k
R P parrallel

S k
P G

N =

 = > ∑ 

,	 (27)

Where kG  is the thk  realization of G , SN  is the sample size, and 

[]⋅  
is an indicator function such that kG  is in the reliable set (i.e. 

when 0kG > ) and zero otherwise.
Since the proposed method facilitates explicit lower-dimensional 

approximation of a general multivariate function, the embedded MCS 
can be conducted for any sample size. The accuracy and efficiency of 
the reliability calculations using the developed method will be dis-
cussed in section 5.

5. Numerical examples

Three methods, including the Partial Least Squares Regression-
Response Surface Method (PLSRRSM), Corrected-Partial Least 
Squares Regression-Response Surface Method (C-PLSRRSM), and 

direct MCS (D-MCS) with 610  samples, are discussed to analyze the 
system reliability with dependency. Accuracy of the proposed method 
is verified by three numerical examples. The system reliability calcu-
lated with the original performance functions by MCS is used as the 
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benchmark data. When comparing computational efforts, the number 
of original performance function evaluations is chosen as the primary 
metric in this paper. For the direct MCS, the number of original func-
tion evaluation is same as the sample size. However, the MCS (al-
though with the same sample size as the direct MCS) embedded in 
the proposed method is conducted by using their response surface ap-
proximations. The difference in CPU times in evaluating an original 
function and its response surface approximation is significant when a 
calculation of the original function involves in expensive finite-ele-
ment or mesh-free analysis.

5.1.	 Example 1—A ten-bar truss structural system

A ten-bar, linear-elastic, truss structure, shown in Fig. 1, was stud-
ied to examine the accuracy and efficiency of the proposed system 
reliability analysis method. Two concentrated forces are applied at 
nodes 2 and 4. In order to build the limit state function of the structural 
system, three failure modes of the system analyzed by Huang [17] are 
shown: The stress failure of bar 3 indicates that the stress applied on 
bar 3 is larger than that of the allowable stress, is expressed as:

( ) ( ) ( ) ( )

( ) ( ) ( )

3 2 2 3 2 2 2 2
1 2 3 3 1 2 1 2 3 1 1 2 3 3 1 2

2 2 2 2
2 1 3 1 2 3 1 2 1 3 1 2

1
1 3

4 2 24 7 26 4 20 76 10 2 25 29

4 8 4 2 3 4 6
1

allow

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A

pl
g

A A ed

+ + + + + + + +

+ + + + +

=

−
  



  ; 

(28)

The stress failure of bar 7, where the stress applied is larger than the 
allowable stress, is given by:

( )
( ) ( ) ( )

1 2 3 1 3
2 2 2 2 2

1 2 1 3 1 2 3 1 2 1 3 1 2

2 2
2 1

4 8 4 2 3 4 6allow

A A A A Ap
g

A A A A A A A A A A A A Aσ

+
= + −

+ + + + +

 
 
 
 

; 

(29)

And the displacement failure of the node 2, demonstrating that the 
maximum displacement occurred at node 2 exceeds to the allowable 
one, is presented by:

( )
( ) ( ) ( )

1 2 3 1 3
3 2 2 2 2

3 2 1 3 1 2 3 1 2 1 3 1 2

2 2 2
2 1

4 8 4 2 3 4 6allow

A A A A Ap
g

A A A A A A A A A A A A Aσ

+
= + −

+ + + + +

 
 
 
 

. 

(30)

Then the system limit state function of the ten-bar structure is given 
by:

	 [ ]1 2 3, ,gsG min g g= ;	 (31)

The system which composed of three failure modes with the cor-
responding three component limit state functions is a series system. 
And this system is used to demonstrate the accuracy and efficiency 
of the proposed method. Properties of the input random variables, 

denoted as 1 11X X− , are list in Table.1. All variables are normally 
distributed.

The reliability results, from PLSRRSM, C-PLSRRSM, and 
D-MCS, corresponding to the change of number of sample points 
used to develop the surrogate model, are given in Fig. 2. When the 
number of sample points are 4 n=4 8=32× × , reliabilities of the ten-
bar truss structure system obtained by PLSRRSM, C-PLSRRSM, 
and D-MCS, are 0.5767,0.9443 and 0.9315, respectively. The prob-
ability of reliability calculated by D-MCS is selected as the bench-
mark, and then the percentages of reliability result errors from 
PLSRRSM and C-PLSRRSM are 38.1% and 1.37%, respectively. 
It is shown that the accuracy of the reliability given by the correc-
tion model is improved by 36.74%. Moreover, when the number of 
sample points are more than 32, the accuracy of the reliability prob-
abilities estimated by the two proposed methods stand still with the 
increase of the sample points. In other words, the accuracy of the 

Fig. 1. A ten-bar truss structure with random cross-sectional areas

Fig. 2. Reliability of the structure corresponding to the sample points

Table 1.	 Distribution details of input random variables

Variable Description Distribution Mean Standard 
deviation

1X 1A (cm2) Normal 13 1

2X 2A
(cm2) Normal 2 0.5

3X 3A (cm2) Normal 9 0.5

4X p (Kg) Normal
104 500

5X l (cm) Normal 360 1.2

6X e (GPa) Normal 100 5

7X allowσ (GPa) Normal 2 0.2

8X
allowd (cm) Normal 4.25 0.2
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proposed method cannot be improved by giving a large number of 
sample points. From the discussion, it is verified that the proposed 
correction model requires only a few original function evaluations to 
generate an accurate result.

5.2.	 Example 2—A cantilever beam system

This second test problem involves the reliability analysis of a can-

tilever beam as shown in Fig. 3. Two external forces 1F  and 2F  , two 

external moments 1M  and 2M , and external distributed loads repre-

sented by ( )1 1q ,L Rq  and ( )2 2q ,L Rq , are applied on the cantilever 
beam. A total of twenty-one random variables, such as, dimensions, 

the yield strength S , the maximum allowable shear stress maxτ  , are 

involved in this example, as shown in Table. 2. The system limit state 
function composed of three component limit sate functions [7] will be 
used to describe the accuracy of the proposed method.

The system limit state function consists of: the first component 
limit state function, representing the difference between the maximum 
normal stress and the yield strength S , is given by:

( )( ) ( )( )[ ] ( )[ ]

1 2

2 2 2 2

1 1 1 1
2

6

/ 2 / 2 2 / 3
6

i i i Li i i i i Ri Li i i i i i
i i i i

M
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M F b q d c d c q q d c c d c
S

wh
= = = == −

= −

+ + − + + − − + −∑ ∑ ∑ ∑
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(32)

The second component limit state function expresses that the de-

flection tipv  of the tip of the beam should be less than the allowable 

deflection maxv  and is defined as:

( ) ( )( )
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(33)

Where R  is the reaction force at the fixed end; The Young’s modulus 

E  is 9200 10 Pa× ; the moment of inertia is ( ) 31 12I hω= , and the 

allowable deflection is =0.025maxv .

The third limit state function is given by:

( ) ( )( )2 2 2

3 max max
1 1 1

3
=

2 2
Ri Li i i

i Li i i
i i i

q q d c
g F q d c

wh
τ τ τ

= = =

− −
= − − + − +

 
 
 
∑ ∑ ∑ . 

(34)

Where τ  is the shear stress at root, and the term in curly brackets is 
the shear force at the root.

Fig. 3. Cantilever beam

Table 2.	 Distributions of random variables

vari-
able description Mean

value
Standard
deviation

Distribution
type

1X
1M (Nm) 350.0 10× 35.0 10× Normal

2X
2M (Nm) 330.0 10× 33.0 10× Normal

3X
1F (N) 318.0 10× 34.0 10×

Extreme value
type I

4X
2F (N) 330.0 10× 33.0 10× Normal

5X 1Lq (N/m) 330.0 10× 31.0 10× Normal

6X 1Rq (N/m) 320.0 10× 31.0 10× Normal

7X 2Lq (N/m) 320.0 10× 31.0 10× Normal

8X 2Rq (N/m) 31.0 10× 10 Normal

9X 1a (m) 1.5 0.005 Normal

10X 2a (m) 4.5 0.005 Normal

11X 1b (m) 0.75 0.001 Normal

12X
2b (m) 2.5 0.001 Normal

13X
1c (m) 0.25 0.0005 Normal

14X
2c (m) 1.75 0.001 Normal

15X
1d (m) 1.25 0.001 Normal

16X
2d (m) 4.75 0.001 Normal

17X L (m) 5 0.01 Normal

18X w (m) 0.2 0.0001 Normal

19X h (m) 0.4 0.0001 Normal

20X S (Pa) 680.0 10× 68.0 10× Normal

21X maxτ (Pa)
63.5 10× 60.5 10× Normal



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.18, No. 2, 2016 267

Science and Technology

The system limit state function is defined as [ ]1 2 3, ,gsG min g g=  , 
and the system reliability is given as { }Pr 0SpRs G= > .

With the increase of the sample points, Fig. 4 presents reliability 
probabilities of the cantilever beam, predicted by PLSRRSM and C-
PLSRRSM, as well as by D-MCS. The reliability probabilities from 
PLSRRSM, C-PLSRRSM and D-MCS, when the number of sample 
points is 4 n=4 21=84× × , are 0.967, 0.9542 and 0.9537, respectively. 
The absolute error percentages of the PLSRRSM and C-PLSRRSM to 
D-MCS are 1.39% and 0.052%, respectively. Therefore, the probabili-
ties calculated by both of the two proposed method are accurate, and 
the results obtained by C-PLSRRSM closes to the benchmark almost 
without error. As can be seen in Fig. 4, when the number of the sample 
points is more than 84, both the PLSRRSM and C-PLSRRSM provide 
stable reliability results with small fluctuations. The same conclusion 
is derived from the results that C-PLSRRSM is more accurate than 
PLSRRSM. The effectiveness of the proposed method is also demon-
strated by the example.

5.3.	 Example 3—Vehicle side impact

The final test problem investigates the side impact crash-worthi-
ness of a vehicle subjecting to variations in the sizes and material 
properties of several key components. This problem has been inves-
tigated by many researchers in the fields of reliability based design 
optimization and robust design optimization. However, the reliability 
of each component is treated separately without considering their fail-
ure dependency. Actually, all failure modes are being the potential 
failure mode and strong dependencies are contained between them. 
When any of the components fails, the entire vehicle as the series 
system is said to be failed. The limit state system function constructed 
by Bichon [3] with ten failure modes will be used to test the proposed 
method.

Ten equations corresponding to failure modes are considered: 

the abdomen load

2 4 2 10 3 9 6 101.16 0.3717 0.00931 0.484 0.01343L X X X X X X X X= − − − + ; (35)

the pubic symphysis force

2
4 2 3 4 10 6 10 114.72 0.5 0.19 0.0122 0.009325 0.000191F X X X X X X X X= − − − + +  ; 

(36)

the rib deflections at upper

3 1 2 5 10 6 9 7 8 9 1028.98 3.818 4.2 0.0207 6.63 7.7 0.32uD X X X X X X X X X X X= + − + + − +  ; 

(37)

the rib deflections at middle

3 10 1 2 2 8 5 10 7 8 8 933.86 2.95 0.1792 5.057 11.0 0.0215 9.98 22.0mD X X X X X X X X X X X X= + + − − − − + ; 

(38)
the rib deflections at lower

	 2 1 8 3 1046.36 9.9 12.9 0.1107lD X X X X X= − − + ;	 (39)

the viscous criteria at upper

1 2 1 8 2 7 3 5 5 10

6 9 8 11 10 11

0.261 0.0159 0.188 0.019 0.0144 0.0008757

         0.08045 0.00139 0.00001575
uVC X X X X X X X X X X

X X X X X X

= − − − + +

+ + +  ;

(40)

the viscous criteria at middle

5 1 8 1 9 2 6 2 7 3 8

3 9 5 6 5 10 6 10 8 11

0.214 0.00817 0.131 0.0704 0.03099 0.018 0.0208

         0.121 0.00364 0.0007715 0.0005354 0.00121
mVC X X X X X X X X X X X

X X X X X X X X X X

= + − − + − +

+ − + − + ; 

(41)
the viscous criteria at lower

2
2 3 8 3 10 7 9 20.74 0.61 0.163 0.001232 0.166 0.227lVC X X X X X X X X= − − + − + ; (42)

the velocity the B-pillar

1 2 2 8 3 10 4 10 6 1010.58 0.674 1.95 0.02054 0.0198 0.028BV X X X X X X X X X X= − − + − + ; 

(43)

the velocity at the door

2
3 7 5 6 9 10 9 11 1116.45 0.489 0.843 0.0432 0.0556 0.000786DV X X X X X X X X X= − − + − − ; 

(44)

Combined with the corresponding allowable values, then the system 
limit state function of the vehicle side impact problem is defined as:

[

]

1 2 3 4 5

6 7 8 9 10

1.0 ; 4.01 ; 32.0 ; 32.0 ; 32.0 ;

0.32 ; 0.32 ; 0.32 ; 9.9 ; 15.69

s u m l

u m l B D

G min g L g F g D g D g D

g VC g VC g VC g V g V

= = − = − = − = − = −

= − = − = − = − = −
, 

(45)
and the system reliability can be expressed by:

	 { }Pr 0SpRs G= > .	 (46)

The distribution information of the random variables, denoted 

as 1 11X -X , involving the thickness and material properties of critical 
structures in the vehicle and the location of the impact, are described 
in Table. 3.

Fig. 4. Reliability of cantilever beam vs. sample points
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The reliability was calculated by using the proposed method and 
compared with the D-MCS, as shown in Fig. 5. The reliability with 
the increase of the sample points are also described in Fig. 5. Corre-
sponding to the number of sample points, 4 n=4 11=44× × , the calcu-
lated reliability results of the vehicle are 0.747, 0.8441 and 0.8231 for 
PLSRRSM, C-PLSRRSM, D-MCS respectively. The error percent-
ages of the proposed method to D-MCS are 9.25% and 2.55%. 

Different from the above examples, the accuracy of the results 
improved by the corrected model is not significant and the reliability 
results, computed by PLSRRSM and C-PLSRRSM are close to each 

other, when the number of the sample points is more than 82. This 
may be due to the fact that the original functions of the vehicle system 
are derived from RSM. Nevertheless, the accuracy and efficiency of 
the proposed method is obvious.

6. Conclusion

Based on the ability of the PLSR to analyze the dependent relation-
ship between the same input variables and the corresponding different 
responses, a new response surface modeling method for the structural 
or mechanical system was developed. To improve the accuracy of the 
surrogate model, a correction method by adding a coefficient to each 
component meta-model of the system surrogate model was presented. 
The coefficient is defined as the difference between the exact response 
value and the surrogate one at the mean values of the input variables. 
Then the corrected surrogate model combined with MCS method was 
used to analyze the system reliability, named as Corrected-PLSR-
RSM based system reliability analysis (C-PLSRRSM-SRA). As to the 
sampling method to build response surface model, LHS is selected 
and a proper coefficient f 4.5=  to bound the sampling region of the 
input random variables was chosen.

Due to a small number of original function evaluations, the pro-
posed method is effective, particularly when a response evaluation 
entails costly finite-element, mesh-free, or other numerical analysis, 
whose limit state function is implicit. By using the surrogate model, 
it is also an effective way to solve the problem composed of the com-
plex and high nonlinear explicit limit state functions, which saves 
computational expense explicitly. The numerical examples tested in 
the paper indicate that the proposed method provides accurate and 
computationally efficient estimates of reliability. As Compared to the 
PLSRSM method, the C-PLSRRSM method makes considerable im-
provements from the perspective of accuracy, efficiency, and stabil-
ity, with only one more time of calculating the original limit state 
functions. The C-PLSRRSM method could be more accurate to solve 
the reliability of the system with highly nonlinear limit state function 
composed of several component limit sate functions involving a large 
number of input variables, and provide a moderate accurate value of 
the system reliability which fulfils the requirements of engineering 
applications. With the proposed sampling method, another advantage 
of this new method is that a more accurate surrogate model can be 
built with the least number of sample points.

However, the C-PLSRRSM method needs a large number of orig-
inal function evaluations to get the surrogate model when the number 
of the input random variables is large, which will decrease the ef-
ficiency of proposed methods. In addition, the C-PLSRRSM method 
may producing an error for large probability levels (e.g., more than 
99.9%). Because the response surface model is regressed without 
mixed terms, the surrogate model cannot represent the original per-
formance functions in the whole distribution region of the input ran-
dom variables. To deal with these issues, developing a more accurate 
correction method will be a future work.
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Fig. 5. Reliability of vehicle vs. sample points

Table 3.	 Random variables in the vehicle side impact problem

Variable Description Distri-
bution Mean Std.dev

Member thickness (mm)

1X B-pillar inner Normal 0.500 0.030

2X B-pillar reinforcement Normal 1.310 0.030

3X Floor side inner Normal 0.500 0.030

4X Cross members Normal 1.395 0.030

5X Door beam Normal 0.875 0.030

6X Door belt line rein-
forcement Normal 1.200 0.030

7X Roof rail Normal 0.400 0.030

Material properties (GPa)

8X B-pillar inner Normal 0.345 0.006

9X Floor side inner Normal 0.192 0.006

Deviation of impact location (mm)

10X Barrier height 0.0 10.0

11X Barrier hitting posi-
tion 0.0 10.0



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.18, No. 2, 2016 269

Science and Technology

References

1. Au S K, Beck J L. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics 
2001; 16(4): 263-277, http://dx.doi.org/10.1016/S0266-8920(01)00019-4.

2. Bichon B J, Eldred M S, Swiler L P, Mahadevan S, McFarland J M. Efficient Global Reliability Analysis for Nonlinear Implicit Performance 
Functions. Aiaa Journal 2008; 46(10): 2459-2468, http://dx.doi.org/10.2514/1.34321. 

3. Bichon B J, McFarland J M, Mahadevan S. Efficient surrogate models for reliability analysis of systems with multiple failure modes. 
Reliability Engineering & System Safety 2011; 96(10): 1386-1395, http://dx.doi.org/10.1016/j.ress.2011.05.008. 

4. Cai G Q, Elishakoff I. Refined second-order reliability analysis. Structral safety 1994; 14(4): 267-276, http://dx.doi.org/10.1016/0167-
4730(94)90015-9. 

5. Campos-Requena V H, Rivas B L, Perez M A, Wilhelm M. Application of design of experiments, response surface methodology and partial 
least squares regression on nanocomposites synthesis. Polymer Bulletin 2014; 71(8): 1961-1982, http://dx.doi.org/10.1007/s00289-014-
1166-6. 

6. Ditlevsen O. Narrow Reliability Bounds for Structural Systems. Journal of Structural Mechanics 1979; 7(4): 453-472, http://dx.doi.
org/10.1080/03601217908905329. 

7. Du X P. System reliability analysis with saddle point approximation. Structural and Multidisciplinary Optimization 2010; 42(2): 193-208, 
http://dx.doi.org/10.1007/s00158-009-0478-x. 

8. Du X P, Sudjianto A. First-order saddle point approximation for reliability analysis. Aiaa Journal 2004; 42(6): 1199-1207, http://dx.doi.
org/10.2514/1.3877. 

9. Echard B, Gayton N, Lemaire M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation. Structural 
Safety 2011; 33(2): 145-154, http://dx.doi.org/10.1016/j.strusafe.2011.01.002. 

10. Faravelli L. Response-Surface Approach for Reliability-Analysis. Journal of Engineering Mechanics-Asce 1989; 115(12): 2763-2781, http://
dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:12(2763). 

11. Garthwaite P H. An Interpretation of Partial Least-Squares. Journal of the American Statistical Association 1994; 89(425): 122-127, http://
dx.doi.org/10.1080/01621459.1994.10476452. 

12. Gayton N, Bourinet J M, Lemaire M. CQ2RS: a new statistical approach to the response surface method for reliability analysis. Structural 
Safety 2003; 25(1): 99-121, http://dx.doi.org/10.1016/S0167-4730(02)00045-0. 

13. Geladi P, Kowalski B R. Partial Least-Squares Regression - a Tutorial. Analytica Chimica Acta 1986; 185: 1-17, http://dx.doi.org/10.1016/0003-
2670(86)80028-9. 

14. Gupta S, Manohar C S. An improved response surface method for the determination of failure probability and importance measures. Structural 
Safety 2004; 26(2): 123-139, http://dx.doi.org/10.1016/S0167-4730(03)00021-3.

15. Hohenbichler M, Gollwitzer S, Kruse W, Rackwitz R. New light on first-and second-order reliability methods. Structural safety 1987; 4(4): 
267-284, http://dx.doi.org/10.1016/0167-4730(87)90002-6. 

16. Huang B Q, Du X P. Probabilistic uncertainty analysis by mean-value first order Saddle point Approximation. Reliability Engineering & 
System Safety 2008; 93(2): 325-336, http://dx.doi.org/10.1016/j.ress.2006.10.021. 

17. Huang X Z, Zhang Y M, Wu M C. Research on the method for reliability analysis of structural systems based on the dimensional-reduction 
integration. Chinese journal of theoretical and applied mechanics 2013; 45(3): 456-460. 

18. Huang Z, Turner B J, Dury S J, Wallis I R, Foley W J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal 
analysis. Remote Sensing of Environment 2004; 93(1-2): 18-29, http://dx.doi.org/10.1016/j.rse.2004.06.008. 

19. Mahadevan S, Raghothamachar P. Adaptive simulation for system reliability analysis of large structures. Computers & Structures 2000; 
77(6): 725-734, http://dx.doi.org/10.1016/S0045-7949(00)00013-4. 

20. Malthouse E C, Tamhane A C, Mah R S H. Nonlinear partial least squares. Computers & Chemical Engineering 1997; 21(8): 875-890, http://
dx.doi.org/10.1016/S0098-1354(96)00311-0. 

21. McDonald M, Mahadevan S. Design optimization with system-level reliability constraints. Journal of Mechanical Design 2008; 130(2): 
1-10, http://dx.doi.org/10.1115/1.2813782. 

22. Mckay M D, Beckman R J, Conover W J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output 
from a Computer Code. Technometrics 1979; 21(2): 239-245. 

23. Melchers R E. Importance Sampling in Structural Systems. Structural Safety 1989; 6(1): 3-10, http://dx.doi.org/10.1016/0167-
4730(89)90003-9. 

24. Mutingi M. System reliability optimization: a fuzzy multi-objective genetic algorithm approach. Eksploatacja i Niezawodnosc - Maintenance 
and Reliability 2014; 16(3): 400-406. 

25. Nie J, Ellingwood B R. Directional methods for structural reliability analysis. Structural Safety 2000; 22(3): 233-249, http://dx.doi.
org/10.1016/S0167-4730(00)00014-X. 

26. Niederreiter H, Spanier J. Monte Carlo and Quasi-Monte Carlo Methods. Berlin: Springer-Verlag, 2000.
27. Park J, Towashiraporn P. Rapid seismic damage assessment of railway bridges using the response-surface statistical model. Structural Safety 

2014; 47: 1-12, http://dx.doi.org/10.1016/j.strusafe.2013.10.001. 
28. Rackwitz R. Reliability analysis - a review and some perspectives. Structural Safety 2001; 23(4): 365-395, http://dx.doi.org/10.1016/S0167-

4730(02)00009-7. 
29. Rausand M, Hoyland A. System reliability theory: models, statistical methods, and application. 2nd edn. ed. New York: Wiley-interscience, 

2000. 
30. Schmidtlein S, Sassin J. Mapping of continuous floristic gradients in grasslands using hyperspectral imagery. Remote Sensing of Environment 

2004; 92(1): 126-138, http://dx.doi.org/10.1016/j.rse.2004.05.004. 
31. Shi L, Yang R J, Zhu P. An Adaptive Response Surface Method Using Bayesian Metric and Model Bias Correction Function. Journal of 

Mechanical Design 2014; 136(3), http://dx.doi.org/10.1115/1.4026095. 



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.18, No. 2, 2016270

Science and Technology

32. Shieh M D, Yeh Y E. Developing a design support system for the exterior form of running shoes using partial least squares and neural 
networks. Computers & Industrial Engineering 2013; 65(4): 704-718, http://dx.doi.org/10.1016/j.cie.2013.05.008. 

33. Song J H, Kiureghian A D. Bounds on system reliability by linear programming. Journal of Engineering Mechanics-Asce 2003; 129(6): 627-
636, http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:6(627). 

34. Szybka J, Broniec Z, Pilch R. Forecasting the failure of a thermal pipeline on the basis of risk assessment and exploitation analysis. 
Eksploatacja i Niezawodnosc -Maintenance and Reliability 2011; (4): 5-10. 

35. Wang H. Partial least squares regression method and application. Beijing: National defense industry press, 1999.
36. Wold S, Sjostrom M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 2001; 

58(2): 109-130, http://dx.doi.org/10.1016/S0169-7439(01)00155-1. 
37. Won J, Choi C, Choi J. Improved dimension reduction method (DRM) in uncertainty analysis using kriging interpolation. Journal of 

Mechanical Science and Technology 2009; 23(5): 1249-1260, http://dx.doi.org/10.1007/s12206-008-0721-1. 
38. Youn B D, Wang P F. Complementary Intersection Method for System Reliability Analysis. Journal of Mechanical Design 2009; 131(4): 

1-15, http://dx.doi.org/10.1115/1.3086794. 
39. Zhao W, Wang W. Application of non-linear partial least squares regression method to response surface method with uniform design. Acta 

aeronautica et astronautica sinica 2012; 33(5): 839-847. 
40. Zhao W, Wang W. Application of partial least squares regression in response surface for analysis of structural reliability. Engineering 

mechanics 2013; 30(2): 272-277. 
41. Zou T, Mahadevan S, Mourelatos Z, Meernik P. Reliability analysis of automotive body-door subsystem. Reliability Engineering & System 

Safety 2002; 78(3): 315-324, http://dx.doi.org/10.1016/S0951-8320(02)00178-3.

Huahan Liu
Wei Jiang
Zahid Hussain Hulio
Qiuzhi Wang

School of Mechanical Engineering
Dalian University of Technology
Linggong Road, No 2
Ganjingzi District, Dalian, Liaoning Province, China

E-mails: liuhh1987@126.com, jiangwei@dlut.edu.cn, 
hussainafrasiyab@gmail.com, 875961226@qq.com 


