PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of potassium nitrate based solid propellant grains formulation using response surface methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was designed to evaluate the effect of propellant formulation and geometry on the solid propellant grains internal ballistic performance using core, bates, rod and tubular and end-burn geometries. Response Surface Methodology (RSM) was used to analyze and optimize the effect of sucrose, potassium nitrate and carbon on the chamber pressure, temperature, thrust and specific impulse of the solid propellant grains through Central Composite Design (CCD) of the experiment. An increase in potassium nitrate increased the specific impulse while an increase in sucrose and carbon decreased specific impulse. The coefficient of determination (R2) for models of chamber pressure, temperature, thrust and specific impulse in terms of composition and geometry were 0.9737, 0.9984, 0.9745 and 0.9589, respectively. The optimum specific impulse of 127.89 s, pressure (462201 Pa), temperature (1618.3 K) and thrust (834.83 N) were obtained using 0.584 kg of sucrose, 1.364 kg of potassium nitrate and 0.052 kg of carbon as well as bate geometry. There was no significant difference between the calculated and experimented ballistic properties at p < 0.05. The bate grain geometry is more efficient for minimizing the oscillatory pressure in the combustion chamber.
Twórcy
autor
  • Ladoke Akintola University of Technology, Nigeria
autor
  • Center for Space Transport and Propulsion, National Space Research and Development Agency, Epe, PMB 1001, Lagos, Nigeria
autor
  • Department of Chemical Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
Bibliografia
  • 1. Kamran A. and Guozhu L. An integrated approach for optimization of solid rocket motor. Aerospace Science and Technology, 17, 2012, 50–64.
  • 2. Cai G., Hao Z., Dalin R., Hui T. Optimal design of hybrid rocket motor powered vehicle for suborbital flight. Aerospace Science and Technology, 25, 2013, 114–124.
  • 3. Yumusak M. Analysis and design optimization of solid rocket motors in viscous flows. Computers and Fluids, 75, 2013, 22–34
  • 4. Marimuthu R. and Rao B.N. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains. International Journal of Pressure Vessels and Piping, 112-113, 2013, 131–145.
  • 5. DeLuca L., Galfetti L., Colombo G., Maggi F., Bandera A., Babuk V.A., Sinditskii V.P. Microstructure effects in aluminized solid rocket propellants. Journal of Propulsion and Power, 26 (4), 2010, 724–733.
  • 6. Maggi F., Dossi S., DeLuca L.T. Combustion of metal agglomerates in a solid rocket core flow. Acta Astronautica, 92, 2013, 163–171.
  • 7. Maggi F., Bandera A., Galfetti L., De Luca L.T., Jackson T.L. Efficient solid rocket propulsion for access to space. Acta Astronautica, 66 (11–12), 2010, 1563–1573.
  • 8. Sutton G P. and Biblarz O. Rocket propulsion ele¬ments. John Wiley and Sons, 8th edition. New Jer¬sey, 2010.
  • 9. Yaman H., Celik V., Degirmenci E. Experimental investigation of the factors affecting the burning rate of solid rocket propellants. Fuel, 115, 2014, 794–803.
  • 10. Degirmenci E. Effects of grain size and tempera¬ture of double base solid propellants on Internal ballistics performance, Fuel, 146, 2015, 95–102
  • 11. Turner M.J.L. Rocket and Spacecraft Propulsion: Principles, Practice and new Development, Third Edition. Praxis Publishing Ltd, Chichester, UK, 2009.
  • 12. Kubato N. Propellant and explosives. Germany, 2002. ISBN: 3-527-30210-7.
  • 13. Wu X.G., Yan Q.L., Guo X., Qi X.F., Li X.J., Wang K.Q. Combustion efficiency and pyrochemical properties of micron-sized metal particles as the components of modified double-base propellant. Acta Astronautica, 68, 2011, 1098–1112.
  • 14. Meda L., Marra G., Galfetti L., Severini F., De Luca L. Nano-aluminum as energetic material for rocket propellants. Material Science and Engineering, 27, 2007, 1393–1396.
  • 15. Song S.J., Kim H.J., Ko S.F., Oh H.T., Kim I.C., Yoo J.C., Jung J.Y. Measurement of solid propellant burning rates by analysis of ultrasonic full waveforms. Journal of Mechanical Science and Technology, 23, 2009, 1112–1117.
  • 16. Peterson J., Garfield J. 1976, The automated design of multi-stage solid rocket vehicles, AIAA 76–744.
  • 17. Walsh T., Wartburg R. Ballistic missile sizing and optimizing. AIAA 78-1019, 1978.
  • 18. Sforzini R.H. An automated approach to design of solid rockets utilizing a special internal ballistic model. AIAA 80-1135, 1980.
  • 19. Swaminathan V. and Madhavan N.S. A direct random search technique for the optimization of propellant systems. The Journal of the Aeronautical Society of India, 32, 1980, 23–32.
  • 20. Truchot A. 1989, Overall optimization of solid rocket motors. AIAA 89-16916.
  • 21. Fang Z. and Guo G. Optimization design of the solid rocket motor. Journal of Aerospace Power, 5, 1990, 176–178.
  • 22. Guobiao C., Jie F., Xu X., Minghao L. Performance prediction and optimization for liquid rocket engine nozzle. Science and Technology, 11, 2007, 155–162.
  • 23. Khurram N., Guozhu L., Qasim Z. A hybrid optimization approach for SMR Finocyl grain design. Chinese Journal of Aeronautics, 21 (6), 2008, 481–487.
  • 24. Kamran A. and Guozhu L. Design and optimization of 3D radial slot grain configuration. Chinese Journal of Aeronautics 23, 2010, 409–414.
  • 25. Kamran A. and Guozhu L. An integrated approach for optimization of solid rocket motor. Aerospace Science and Technology, 17, 2012, 50–64.
  • 26. Yumusak M. and Eyi S. Design optimization of rocket nozzles in chemically reacting flows. International Journal of Computational Fluids, 65, 2012, 25–34.
  • 27. Badyrka J.M., Hartfield R.J., Jenkins R.M. Aerospace design optimization using a compound repulsive particle swarm. Applied Mathematics and Computation, 219, 2013, 8311–8331.
  • 28. Adami A., Mortazavi M., Nosratollahi M. A new approach in multidisciplinary design optimization of upper-stages using combined framework, Acta Astronautica, 114, 2015, 174–183.
  • 29. Montgomery D.C. Design and analysis of experiments: Response surface method and designs. John Wiley and Sons, Inc., New Jersey, 2005.
  • 30. Montgomery D.C. Water treatment principles and design. Wiley Interscience, New York, 2009, 175.
  • 31. Richard A.N. Solid propellant rocket motor design and testing. An M.Sc thesis submitted to Faculty of Engineering, University of Manitobs, Manitobs, 1984, 133–145.
  • 32. Robert A.B. Basics of space flight, rocket propulsion. A Wiley-Interscience Publication, New York City, 5th ed, 2009, 123–132.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4dd5c78-cb05-4000-a080-14dad9eed976
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.