PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameter Description of the Surface Metal Fiber Arrangement of Electromagnetic Shielding Fabric

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ rozmieszczenia włókien metalowych na skuteczność ekranowania tkanin osłonowych
Języki publikacji
EN
Abstrakty
EN
The influence of the surface metal fiber (SMF) arrangement on the shielding effectiveness (SE) of electromagnetic shielding fabric (EMSF) is important, but there is no reasonable description method for it at present, making the further exploration of the relationship between SMF and SE difficult. In order to scientifically describe the SMF arrangement of EMSF, this paper constructs a binary feature matrix of SMF based on a previous study of SMF region recognition. According to the feature matrix, three parameters of the exposure ratio, the discrete mean and disorder degree are proposed and the calculation equations for the three parameters given. Experiments were designed and testing samples determined to test the SE, and the exposure ratio, discrete mean and disorder degree of each sample are calculated. The relationship between the three parameters and the SE is analysed for effectiveness validation of the three parameters. Results show that the exposure ratio, discrete mean and disorder degree can describe three aspects of the SMF arrangement: the percentage content, porosity and orientation, which are positively correlated, negatively correlated and positively correlated to the SE, respectively. The research in this paper provides a basis for the study of the shielding mechanism, the transmission model, the shielding rule and the rapid non-destructive evaluation of the EMSF, and puts forward a new idea for the study of shielding theory and the application of the EMSF.
PL
Ze względu na istotny wpływ rozmieszczenia włókien metalowych (SMF) na skuteczność ekranowania (SE) tkanin osłonowych (EMSF) w pracy przedstawiono macierz binarną opartą na trzech parametrach włókien metalowych tj.: współczynniku ekspozycji, średniej wartości odległości między włóknami metalowymi i stopniu ich nieuporządkowania. Analizowano zależności pomiędzy wyżej wymienionymi parametrami a skutecznością ekranowania. Przedstawione wyniki stanowią podstawę do opracowania szybkiej i nieniszczącej metody oceny skuteczność ekranowania oraz do dalszych badań mechanizmu ekranowania.
Rocznik
Strony
62--67
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Zhongyuan University of Technology, Zhengzhou, 450007,China
autor
  • Zhongyuan University of Technology, Zhengzhou, 450007,China
autor
  • Zhongyuan University of Technology, Zhengzhou, 450007,China
autor
  • Zhongyuan University of Technology, Zhengzhou, 450007,China
autor
  • Zhongyuan University of Technology, Zhengzhou, 450007,China
autor
  • Zhongyuan University of Technology, Zhengzhou, 450007,China
Bibliografia
  • 1. Wang XC, Liu Z, Zhou Z, He Q, Zeng HX. Automatic identification of gray porosity and its influence on shielding effectiveness for electromagnetic shielding fabric. Int. J. Cloth. Sci. Tech.2014; 26(5):424-436.
  • 2. Liu Z, Wang XC, Zhang YH, Zhou Z. Analysis of surface metal fiber arrangement of electromagnetic shielding fabric and its influence on shielding effectiveness. Int. J. Cloth. Sci. Tech.2016; 28(2):191-200.
  • 3. Liu Z, Rong X, Zheng QX, Sun RL, Chen YN, Wang XC. Analysis of arrangement structure for metal fiber in blended electromagnetic shielding fabric, 2014 Progress in Electromagnetics Research Symposium (PIERS 2014), Aug.25-28.
  • 4. Kazantseva NE, Ponomarenko AT, Shevchenko VG, Klason C. Magnetically textured composite materials as elements of electromagnetic wave absorbers. Electromagnetics 2000; 20(6):453-466.
  • 5. Ortlek HG, Saracoglu OG, Saritas O. Electromagnetic shielding characteristics of woven fabrics made of hybrid yarns containing metal wire. Fiber. Polym.2012; 13(1):63-67.
  • 6. Wang X, Liu Z, Zhou Z. Rapid computation model for accurate evaluation of electromagnetic interference shielding effectiveness of fabric with hole based on equivalent coefficient. Int. J. Appl. Electrom. 2015; 47(1):177-185.
  • 7. Li R, Zhang L, Jia L. Influence of fabric structural model on shielding effectiveness of electromagnetic radiation shielding fabric. Int. J. Model. Ident. Contr.2010; 11(3/4):211-217.
  • 8. Liu Z, Wang XC. Influence of fabric weave type on the effectiveness of electromagnetic shielding woven fabric. J. Electro. Magnet. Wave. 2012; 26(14/15):1848-1856.
  • 9. Saini P, Choudhary V. Conducting polymer coated textile based multilayered shields for suppression of microwave radiations in 8.2–12.4 GHz range. J. Appl. Polym. Sci.2013; 129(5):2832–2839.
  • 10. Wang XC, Liu Z, Zhou Z. Virtual metal model for fast computation of shielding effectiveness of blended electromagnetic interference shielding fabric. Int. J. Appl. Electrom.2014; 44(1):87-97.
  • 11. Araneo R, Lovat G. Analysis of the shielding effectiveness of metallic enclosures excited by internal sources through an efficient Method-of-Moment approach. Appl. Comput. Electrom. 2010;25(7):600-611.
  • 12. Liu Z, Zhang YH, Rong X, Wang XC. Influence of metal fibre content of blended electromagnetic shielding fabric on shielding effectiveness considering fabric weave. Fibres. Text. East. Eur. 2015; 23(4): 83-87.
  • 13. Saravanja B, Malaric K, Pusic T, Ujevic D. Impact of dry cleaning on the electromagnetic shield characteristics of interlining fabric. Fibres. Text. East. Eur. 2015; 23(1):104-108.
  • 14. Wang XC, Liu Z. Influence of fabric density on shielding effectiveness of electromagnetic shielding fabric. Prz. Elektrotechniczny 2012; 88(11a):236-238.
  • 15. Ching IS, Jin TC. Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness. Textile Res. J. 2004; 74(1):51-54.
  • 16. Liu Z, Wang XC. Manufacture and performance evaluation of solar garment. J. Clean Prod.2013; 42:96-102.
  • 17. Koprowska J, Dobruchowska E, Reszka K, Szwugier A. Morphology and electromagnetic shielding effectiveness of PP nonwovens modified with metallic layers. Fibres. Text. East. Eur.2015; 23(5):84-91.
  • 18. Wang XC, Li XJ. Recognition of fabric density with quadratic local extremum. Int. J. Cloth. Sci. Tech. 2012;24(5):328-338.
  • 19. Liu Z, Wang XC. Relation between shielding effectiveness and tightness of electromagnetic shielding fabric. J. Ind. Text. 2013;43(2):302-316.
  • 20. Liu Z, Rong X, Yang YL, Wang XC. Influence of Metal Fiber Content and Arrangement on Shielding Effectiveness for Blended Electromagnetic Shielding Fabric. Mater. Sci-medzg. 2015; 21(2):265-270.
  • 21. Qian ZM, Chen ZJ. Electromagnetic compatibility design and interference suppression technology.Ed. Zhejiang University Press, Hangzhou, 2000.
  • 22. Liu Z., Su Y., Li YP, Pan Z, Wang XC. Numerical calculation of shielding effectiveness of electromagneticshielding fabric based on finite difference time domain. Int. J. Appl. Electrom.2016;50(4):593-603.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4d77316-e218-4dfb-aa64-17d7263e7ae8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.