PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of 2-phenylbenzimidazole-5-sulfonic acid using heterogeneous photocatalysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
UV filters are classified as environmental pollutants (emerging pollutants). One of the most frequently detected UV filters in real samples is 2-phenylbenzimidazole-5-sulfonic acid (PBSA). It has been shown that conventional technologies applied in sewage treatment plants are not adapted for complete removal of sunscreen agents. Therefore, there is a trend to undertake activities leading to improvement of water quality by enhancing treatment methods. This is important due to the fact that in an aqueous environment, in the presence of UV radiation or sunlight irradation, PBSA generates reactive oxygen species that can damage the DNA of living organisms. The aim of study was to investigate an effect of pH and TiO2 on PBSA stability in the presence of UV radiation. It was found that the rate of PBSA degradation depends on the catalyst dose and pH of solution. The photocatalysis reaction was carried out in a Heraeus laboratory exposure set equipped with a 150 W medium pressure mercury lamp. The course of PBSA degradation process as a function of time was monitored using UV/VIS spectrophotometer and liquid chromatograph equipped with UV-Vis detector.
Twórcy
  • UTP University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3 Str., 85-326 Bydgoszcz, Poland
autor
  • UTP University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3 Str., 85-326 Bydgoszcz, Poland
Bibliografia
  • [1] EPA, Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products, in, United States Environmental Protection Agency, (Acessed 26 April 2017).
  • [2] S.A. Snyder, P. Westerhoff, Y. Yoon, D.L. Sedlak, Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry, Environ. Eng. Sci. 20 (2003) 449-469.
  • [3] D.L. Giokas, A. Salvador, A. Chisvert, UV filters: from sunscreens to human body and the environment, TrAC Trends Anal. Chem. 26 (2007) 360-374.
  • [4] M. Celeiro, F.V. Hackbarth, S.M.A. Guelli U. de Souza, M. Llompart, V.J.P. Vila, Assessment of advanced oxidation processes for the degradation of three UV filters from swimming pool water, J. Photochem. Photobiol. A: Chem. 351 (2018) 95-107.
  • [5] M.S. Díaz-Cruz, P. Gago-Ferrero, M. Llorca, D. Barceló, Analysis of UV filters in tap water and other clean waters in Spain, Anal. Bioanal. Chem. 402 (2012) 2325-2333.
  • [6] D.A. Lambropoulou, D.L. Giokas, V.A. Sakkas, T.A. Albanis, M.I. Karayannis, Gas chromatographic determination of 2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobenzoic acid sunscreen agents in swimming pool and bathing waters by solid-phase microextraction, J. Chromatogr. A. 967 (2002) 243-253.
  • [7] M. Vila, J.P. Lamas, C. Garcia-Jares, T. Dagnac, M. Llompart, Ultrasound-assisted emulsification microextraction followed by gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry for the analysis of UV filters in water, Microchem. J. 124 (2016) 530-539.
  • [8] S. Ramos, V. Homem, A. Alves, L. Santos, Advances in analytical methods and occurrence of organic UV filters in the environment: a review, Sci. Total Environ. 526 (2015) 278-311.
  • [9] Y. Ji, L. Zhou, C. Ferronato, A. Salvador, X. Yang, J. Chovelon, Degradation of sun-screen agent 2-phenylbenzimidazole-5-sulfonic acid by TiO2 photocatalysis:kinetics, photoproducts and comparison to structurally related compounds, Appl. Catal. B: Environ. 140-141 (2013) 457-467.
  • [10] R. Rodil, J.B. Quintana, P. López-Mahía, S. Muniategui-Lorenzo, D. Prada- Rodríguez, Multiclass determination of sunscreen chemicals in water samples by liquid chromatography-tandem mass spectrometry, Anal. Chem. 80 (2008) 1307-1315.
  • [11] W.H.M. Abdelraheem, X. He, X. Duan, D.D. Dionysiou, Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254nm/H2O2, J Hazard Mater. 23 (282) 233-240.
  • [12] M. Schlumpf, P. Schmid, S. Durrer, M. Conscience, K. Maerkel, M. Henseler, M. Gruetter, I. Herzog, S. Reolon, R. Ceccatelli, Endocrine activity and developmental toxicity of cosmetic UV filters: an update, Toxicology. 205 (2004) 113-122.
  • [13] K.L. Kinnberg, G.I. Petersen, M. Albrektsen, M. Minghlani, S.M. Awad, B.F. Holbech, J.W. Green, P. Bjerregaard, H. Holbech, Endocrine-disrupting effect of the ultraviolet filter benzophenone-3 in zebrafish, Danio rerio, Environ. Toxicol. Chem. 34 (12) (2015) 2833-2840.
  • [14] L. Off. J. Eur. Union, Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, as amended by Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/ 60/EC and 2008/105/EC as regards priority substances in the field of water policy, in Off. J. Eur. Union, L 226/1., 2013., in, 2013.
  • [15] Y.S. Liu, G.G. Ying, A. Shareef, R.S. Kookana, Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant, Environ. Pollut. 165 (2012) 225-232.
  • [16] M.M. Tsui, H. Leung, P.K. Lam, M.B. Murphy, Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants, Water Res. 53 (2014) 58-67.
  • [17] S. Ramos, V. Homem, A. Alves, L. Santos, A review of organic UV filters in wastewater treatment plants, Environ. Int. 86 (2016) 24-44.
  • [18] M.M. Tsui, H. Leung, T.C. Wai, N. Yamashita, S. Taniyasu, W. Liu, P.K. Lam, M.B. Murphy, Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surfach waters from different countries, Water Res. 67 (2014) 55-65.
  • [19] V.A. Sakkas, D.L. Giokas, D.A. Lambropoulou, T.A. Albanis, Aqueous photolysis of the sunscreen agent octyl-dimethyl-p-aminobenzoic acid: formation of disinfection byproducts in chlorinated swimming pool water, J. Chromatogr. A. 1016 (2003) 211-222.
  • [20] N. Negreira, P. Canosa, I. Rodriguez, M. Ramil, E. Rubi, R. Cela, Study of some UV filters stability in chlorinated water and identification of halogenated by-products by gas chromatography- mass spectrometry, J. Chromatogr. A. 1178(1) (2008) 206-214.
  • [21] A. Gackowska, W. Studziński, J. Gaca, Effect of sodium hypochlorite on conversions of octyl-dimethyl- para-aminobenzoic acid, Desalin. Water Treat., 57(3) (2016) 1429-1435.
  • [22] T. Heberer, K. Reddersen, A. Mechlinski., From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas, Water Sci Technol. 46 (2002) 81-88.
  • [23] Y. Liu, X. He, X. Duan, Y. Fu, D.D. Dionysiou, Photochemical degradation of oxytetracycline: influence of pH and role of carbonate radical, Chem. Eng. J. 276 (2015) 113-121.
  • [24] S. Giannakis, F.A.G. Vives, D. Grandjean, A. Magnet, L.F. De Alencastro, C. Pulgarin, Effect of Advanced Oxidation Processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods, Water Res. 84 (2015) 295-306.
  • [25] N. De la Cruz, L. Esquius, D. Grandjean, A. Magnet, A. Tungler, L.F. De Alencastro, C. Pulgarin, Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant, Water Res. 47 (2013) 5836-5845.
  • [26] C.H. Jo, A.M. Dietrich, J.M. Tanko, Simultaneous degradation of disinfectionbyproducts and earthy-musty odorants by the UV/H2O2 advanced oxidationprocess, Water Res. 45 (2011) 2507-2516.
  • [27] T.E. Doll, F.H. Frimmel, Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water, Catal. Today. 101 (2005) 195-202.
  • [28] S.H.S. Chan, T. Yeong Wu, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol. 86 (2011) 1130-1158.
  • [29] E. Voigtman, Limits of Detection in Chemical Analysis, Hoboken, NJ : Wiley (2017).
  • [30] M. Nan Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Research 44 (2010) 2997-3027.
  • [31] E. Hapeshi, A. Achilleos, M.I. Vasquez, C. Michael, N.P. Xekoukoulotakis, D. Mantzavinos, D. Kassinos, Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions,Water Research 44 (2010) 1737-1746.
  • [32] H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 15 (2013) 1-20.
  • [33] L. Soto-Vázquez , M. Cotto , J. Ducongé , C. Morant, F. Márquez , Synthesis and photocatalytic activity of TiO2 nanowires in the degradation of p-aminobenzoic acid: A comparative study with a commercial catalyst, J Environ Manage. 167 (2016) 23-8.
  • [34] W. Studziński, A. Karczmarek, Effect of various agents on stability of 2-phenylbenzimidazole-5-sulfonic acid, Acta Innovations 25 (2017) 5-21.
  • [35] S. Tsoumachidou, T. Velegraki, I. Poulios, TiO2 photocatalytic degradation of UV filter para-aminobenzoic acid under artificial and solar illumination, Journal of technology and biotechnology 91(2016) 1773-1781.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4d49c37-d8b5-4450-8f63-47861b6c2f3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.