PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shock compressibility and spall strength of textolite depending on fiber orientation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Solid Mechanics Conference (SolMech 2018) (41 ; 27–31.08. 2018 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The experimental study of shock wave compressibility and spall strength of an aramid fiber reinforced epoxy composite (textolite) for two fiber orientations was performed by the VISAR interferometer. The particle velocity profiles were obtained at velocities of the flyer plate from 0.65 to 5.05 km/s. The sound speed of textolite for the longitudinal direction is three times higher than that for transverse one, and as a result, the particle velocity profiles are different for two orientations. For the transverse direction of the fibers, a single shock wave is observed, while for longitudinal one, a two-wave configuration is recorded up to 20 GPa. Hugoniot parameters for both orientations of the fibers were found up to 35 GPa: D = 2.37 + 1.26 ∗ u – for transverse one and D = 1.45 + 2.05 ∗ u – for longitudinal, where D is the shock wave velocity and u is the particle velocity. The spall strength of textolite is equal to 61 MPa for shocks traveling along the fibers, and this is almost twice higher than that for the transverse direction.
Rocznik
Strony
417--431
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Institute of Problems of Chemical Physics RAS, Semenov Ave. 1, Chernogolovka, Russia
  • FSBI “SSC RF ITEP” of NRC, Kurchatov Institute, Bolshaya Cheremushkinskaya 25, Moscow, Russia
autor
  • Institute of Problems of Chemical Physics RAS, Semenov Ave. 1, Chernogolovka, Russia
autor
  • National Research Nuclear UniversityMEPhI, Kashirskoe shosse 31,Moscow, Russia
autor
  • Technical University Darmstadt, Karolinenplatz 5, Darmstadt, Germany
  • Technical University Darmstadt, Karolinenplatz 5, Darmstadt, Germany
Bibliografia
  • 1. J.C.F. Millett, N.K. Bourne, Y.J.E. Meziere, R. Vignjevic, A. Lukyanov, The effect of orientation on the shock response of a carbon fibre – epoxy composite, Composites Science and Technology, 67, 3253, 2009.
  • 2. C.S. Alexander, C.T. Key, S.C. Schumacher, Dynamic response and modeling of a carbon fiber—epoxy composite subject to shock loading, Journal of Applied Physics, 114, 223515, 2013.
  • 3. D.M. Dattelbaum, J.D. Coe, P.A. Rigg, R.J. Scharff, J.T. Gammel, Shockwave response of two carbon fiber-polymer composites to 50 GPa, Journal of Applied Physics, 116, 194308, 2014.
  • 4. W. Riedel, H. Nahme, K. Thoma, Equation of state properties of modern composite materials: modeling shock, release and spallation, Shock Compression of CondensedMatter – 2003, AIP Conference Proceedings, 706, 701–704, 2004.
  • 5. T. Homae, T. Shimizu, K. Fukasawa, O. Masamura, Hypervelocity planar plate impact experiments of aramid fiber-reinforced plastics, Journal of Reinforced Plastics and Composites, 25, 1215–1221, 2006.
  • 6. S.A. Bordzilovskii, S.M. Karakhanov, L.A. Merzhievskii, Shock-wave structure in a unidirectional composite with differently oriented fibers, Combustion, Explosion and Shock Waves, 33, 354–359, 1997.
  • 7. V. Mochalova, A. Utkin, Experimental investigation of shock wave compression of heterogeneous anisotropic materials, GSI-2016-2 REPORT, News and reports from High Energy Density Generated by Heavy Ion and Laser Beams, 45, 2016. https://indico.gsi.de/event/6987/material/3/0.pdf.
  • 8. V. Mochalova, A. Utkin, Investigation of shock wave compressibility of fiber glass for experiments at PRIOR, GSI-2017-2 REPORT, News and Reports from High Energy Density Generated by Heavy Ion and Laser Beams, 37, 2017. https://indico.gsi.de/event/5681/material/10/0.pdf.
  • 9. E. Zaretsky, G. deBotton, M. Perl, The response of a glass fibers reinforced epoxy composite to an impact loading, International Journal of Solids and Structures, 41, 569–584, 2004.
  • 10. P.L. Hereil, O. Allix, M. Gratton, Shock behaviour of 3D carbon-carbon composite, Le Journal de Physique IV, 7, C3-529-C3-534, 1997.
  • 11. T. Lässig, F. Bagusat, S. Pfändler, M. Gulde, D. Heunoske, J. Osterholz, W. Stein, H. Nahme, M. May, Investigations on the spall and delamination behavior of UHMWPE composites, Composite Structures, 182, 590–597, 2017.
  • 12. A.A. Lukyanov, Modeling the effect of orientation on the shock response of a damageable composite material, Journal of Applied Physics, 112, 084908, 2012.
  • 13. C. Frias, S. Parry, N.K. Bourne, D. Townsend, C. Soutis, P.J. Withers, On the high-rate failure of carbon fibre composites, Shock Compression of Condensed Matter – 2015. AIP Conference and Proceedings, 1793, 110011-1–110011-4, 2015.
  • 14. S. Yang, V.B. Chalivendra, Y.K. Kim, Fracture and impact characterization of novel auxetic Kevlar/epoxy laminated composites, Composite Structures, 168, 120–129, 2017.
  • 15. I. Taraghi, A. Fereidoon, F. Taheri-Behrooz, Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures, Materials and Design, 53, 152–158, 2014.
  • 16. P.N.B. Reis, J.A.M. Ferreira, Z.Y. Zhang, T. Benameur, M.O.W. Richardson, Impact response of Kevlar composites with nanoclay enhanced epoxy matrix, Composites: Part B, 46, 7–14, 2013.
  • 17. W. Xie, W. Zhang, L. Guob, Y. Gao, D. Li, X. Jiang, The shock and spallation behavior of a carbon fiber reinforced polymer composite, Composites Part B, 153, 176–183, 2018.
  • 18. V.M. Mochalova, A.V. Utkin, A.V. Pavlenko, S.N. Malyugina, S.S. Mokrushin, Pulse compression and tension of epoxy resin under shock-wave action, Technical Physics, 64, 100–105, 2019.
  • 19. E. Gay, L. Berthe, M. Boustie, M. Arrigoni, E. Buzaud, Effects of the shock duration on the response of CFRP composite laminates, Journal of Physics D: Applied Physics, 47, 45, 455303, 2014.
  • 20. L.M. Barker, R.E. Hollenbach, Laser interferometer for measuring high velocities of any reflecting surface, Journal of Applied Physics, 43, 4669–4675, 1972.
  • 21. A.V. Utkin, G.I. Kanel’, V.E. Fortov, Empirical macrokinetics of the decomposition of a desensitized hexogen in shock and detonation waves, Combustion, Explosion, and Shock Waves, 25, 625–632, 1989.
  • 22. V.A. Borissenok, V.G. Simakov, V.G. Kuropatkin, V.A. Bragunets, V.A. Volgin, V.N. Romaev, V.V. Tukmakov, V.A. Kruchinin, A.A. Lebedeva, D.R. Goncharova, M.V. Zhernokletov, A PVDF dynamic pressure gage, Instruments and Experimental Techniques, 51, 593–601, 2008.
  • 23. P. Coldirola, H. Knopfel, Physics of High Energy Density, Academic Press, New York, London, 1971.
  • 24. S.P. Marsh [ed.], LASL Shock Hugoniot Data, University of California Press, Berkeley, 1980.
  • 25. T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, A.V. Utkin, Spall Fracture, Springer, New York, 2003.
  • 26. G.V. Stepanov, Spalling produced by elastoplastic waves in metals, Strength of Materials, 8, 942–947, 1976.
  • 27. A.V. Utkin, Effect of initial failure rate on the formation of a spalling pulse, Journal of Applied Mechanics and Technical Physics, 34, 578–584, 1993.
  • 28. G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov, Shockwave Phenomena in Condensed Media, Yanus-K, Moscow, 1996.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4d193ed-3f4d-4036-9daa-ba1eafc35f0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.