PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Volatile organic compounds in motor vehicle interiors under various conditions and their effect on human health

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to estimate the mass concentrations of volatile organic compounds (VOCs) such as benzene (B), toluene (T), ethylbenzene (E) and m-, p-, o-xylenes (X) inside of the driver-compartment of motor vehicles. The results were compared with the Czech limits for indoor environments and the external concentrations. The experiments were carried out on various routes with different methods of ventilation. The volatile emissions detected inside the vehicle were investigated in the city of Brno, Czech Republic. Cabin air was collected using desorption tubes and the samples were analysed by thermal desorption gas chromatography with a flame ionisation detector coupled with a mass detector. VOC concentrations detected in the cabin of the vehicle ranged from 2.93 µg.m-3 to 7.96 µg.m-3 for benzene, 1.42 µg.m-3 to 4.38 µg.m-3. for toluene, 44.06 µg.m-3 to 152.00 µg.m-3 for ethylbenzene and 63.07 µg.m-3 to 479.62 µg.m-3 for xylenes. The indoor limit value for benzene, according to the Czech standard, is 7 µg.m-3. Levels of toluene were consistently below the Czech hourly standard, whose value according to the Czech standard is 300 µg.m-3. According to our findings, various methods of ventilation are an important factor influencing the BTEX pollution levels within the interior of the vehicle. In addition, this paper presents the influence results of benzene on the health of passengers inside the cabin of the vehicle. The results show that all age categories, especially children under the age of two, are exposed to increased health risks.
Rocznik
Tom
Strony
205--216
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Department of Transport Means and Diagnostics, Faculty of Transport Engineering, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
  • Department of Transport Means and Diagnostics, Faculty of Transport Engineering, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
  • Department of Risk Engineering, Institute of Forensic Engineering, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
Bibliografia
  • 1. Sejkorova Marie, Branislav Sarkan, Radovan Madlenak, Jacek Caban, Andrzej Marczuk, Jan Verner, Jaroslava Hyrslova. 2018. „Effect of ferrocene addition to a gas oil on smoke opacity and engine noise”. Przemysl Chemiczny 97(8): 1312-1315.
  • 2. Verner Jan, Marie Sejkorova. 2018. „Comparison of CVS and PEMS measuring devices used for stating CO2 exhaust emissions of light-duty vehicles during WLTP testing procedure”. Engineering for Rural Development 17: 2054-2059.
  • 3. Yehliu K., R.L.Vander Wal, O. Armas, A.L. Boehman. 2012. „Impact of fuel formulation on the nanostructure and reactivity of diesel soot”. Combustion and Flame 159(12): 3597- 3606. DOI: https://doi.org/10.1016/j.combustflame.2012.07.004.
  • 4. Duran J., L. Pradenas, V. Parada. 2019. „Transit network design with pollution minimization”. Public Transport 11: 189-210.
  • 5. Yan C., M. Zheng, Q. Yang, Q. Zhang, X. Qiu, Y. Zhang, Y. Zhu. 2015. „Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China”. Environmental pollution 204: 199-206. DOI: https://doi.org/10.1016/j.envpol.2015.05.001.
  • 6. Cao X., Z. Yao, X. Shen, Y. Ye, X. Jiang. 2016. „On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China”. Atmospheric environment 124: 146-155. DOI: https://doi.org/10.1016/j.atmosenv.2015.06.019.
  • 7. Yang W., Q. Zhang, J. Wang, C. Zhou, Y. Zhang, Z. Pan. 2018. „Emission characteristics and ozone formation potentials of VOCs from gasoline passenger cars at different driving modes”. Atmospheric Pollution Research 9(5), 804-813. DOI: https://doi.org/10.1016/j.apr.2018.01.002.
  • 8. Faber J., K. Brodzik, A. Gołda-Kopek, D. Łomankiewicz. 2013. „Air Pollution in New Vehicles as a Result of VOC Emissions from Interior Materials”. Polish Journal of Environmental Studies 22(6): 1701-1709.
  • 9. Yue T., X. Yue, F. Chai, J. Hu, Y. Lai, L. He, R. Zhu. 2017. „Characteristics of volatile organic compounds (VOCs) from the evaporative emissions of modern passenger cars”. Atmospheric environment 151: 62-69. DOI: https://doi.org/10.1016/j.atmosenv.2016.12.008.
  • 10. Chen X., G. Zhang, Q. Zhang, H. Chen. 2011. „Mass concentrations of BTEX inside air environment of buses in Changsha, China”. Building and Environment 46(2): 421-427. DOI: https://doi.org/10.1016/j.buildenv.2010.08.005.
  • 11. Dirks K., N. Talbot, J. Salmond, S. Costello. 2018. „In-cabin vehicle carbon monoxide concentrations under different ventilation settings”. Atmosphere 9(9): 1-14. DOI: https://doi.org/10.3390/atmos9090338.
  • 12. Geiss O., S. Tirendi, J., Barrero-Moreno, D. Kotzias. 2009. “Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars”. Environment international 35(8): 1188-1195. DOI: https://doi.org/10.1016/j.envint.2009.07.016.
  • 13. Huzlik J. 2012. “Těkavé organické látky v městském ovzduší”. [In Czech: “Volatile organic compounds in urban air”]. Proceedings of the 5th Czech-Slovak Conference on Transport, Health and the Environment. Blansko, Czech, 31. October - 2. November 2012.
  • 14. Golhosseini M., H. Kakooei, S. Shahtaheri, M.A.N.S.O.U.R. Rezazadeh-Azari, K. Azam. 2013. „Evaluation of volatile organic compounds levels inside taxis passing through main streets of Tehran”. International Journal of Occupational Hygiene 5(4): 152-158.
  • 15. Bakhtiari R., et al. 2018. „Investigation of in-cabin volatile organic compounds (VOCs) in taxis; influence of vehicle's age, model, fuel, and refueling”. Environmental Pollution 237: 348-355. DOI: https://doi.org/10.1016/j.envpol.2018.02.063.
  • 16. US EPA. 2009. Risk Assessment Guidance for Superfund (RAGS). Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Washington, D.C. Publication EPA-540-R-070-002.
  • 17. Provazník K., L. Komárek. 2004. Manuál prevence v lékařské praxi. [In Czech: Manual of prevention in medical practice]. Charles University. Faculty of Medicine and State Institute of Public Health Prague. ISBN 80-7168-942-4.
  • 18. US EPA. 2005. Supplemental guidance for assessing susceptibility from early-life exposure to carcinogens. Washington, D.C. Publication EPA/630/R-03/003F.
  • 19. Do D.H., H. Van Langenhove, S.I. Chigbo, A.N. Amare, K. Demeestere, C. Walgraeve. 2014. „Exposure to volatile organic compounds: Comparison among different transportation modes”. Atmospheric Environment 94: 53-62. DOI: https://doi.org/10.1016/j.atmosenv.2014.05.019.
  • 20. Xu B., Y. Wu, Y. Gong, S. Wu, X. Wu, S. Zhu, T. Liu. 2016. „Investigation of volatile organic compounds exposure inside vehicle cabins in China”. Atmospheric Pollution Research 7(2): 215-220. DOI: https://doi.org/10.1016/j.apr.2015.09.005.
  • 21. Donchenko V., Y. Kunin, A. Ruzski, L. Barishev, Y. Trofimenko, V. Mekhonoshin. 2016. „Estimated atmospheric emission from motor transport in Moscow based on transport model of the city”. Transportation Research Procedia 14: 2649-2658. DOI: https://doi.org/10.1016/j.trpro.2016.05.423.
  • 22. Hong-li W. el al. 2017. „Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China”. Science of the Total Environment 607: 253-261. DOI: https://doi.org/10.1016/j.scitotenv.2017.07.001.
  • 23. Noordin N. H., el al. 2018. „Preliminary Analysis of Benzene, Toluene, Ethylbenzene, OXylene (BTEX) and Formaldehyde inside Vehicle Cabin”. Journal of Mechanical Engineering 5(6): 80-99.
  • 24. Xu B., X. Chen, J. Xiong. 2018. „Air quality inside motor vehicles' cabins: a review”. Indoor and Built Environment 27(4): 452-465. DOI: https://doi.org/10.1177/1420326X16679217.
  • 25. Kim K. H., et al. 2016. „Measurements of major VOCs released into the closed cabin environment of different automobiles under various engine and ventilation scenarios”. Environmental Pollution 215: 340-346. DOI: https://doi.org/10.1016/j.envpol.2016.05.033.
  • 26. Habeebullah T.M. 2015. „Risk assessment of exposure to BTEX in the Holy City of Makkah”. Arabian Journal of Geosciences 8(2): 1155-1162.
  • 27. Hamid H.H.A., N.S. Jumah, M.T. Latif, N. Kannan. 2017. „BTEXs in indoor and outdoor air samples: source apportionment and health risk assessment of benzene”. Journal of Environmental Science and Public Health 1(1): 49-56.
  • 28. Al-Harbi M. 2019. „Characteristic of atmospheric BTEX concentrations and their health implications in urban environment”. Applied Ecology and Environmental Research 17(1): 33-51.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4ce2a6a-c5a2-4850-8e13-7989feef69d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.